
Paint my hat in 3.5 colors!

K. Kokhas, A. Latyshev

Project team: O. Bursian, D. Kokhas, K. Kokhas, V. Retinskiy

1 Let us introduce: the Hats game!
Let an undirected graph G be given, one sage and one chest with hats of different colors are located in each of its vertices.
All the sages are acquainted with each other. Graph G, the location of the sages in the vertices of the graph and the
colors of hats in all chests are fixed and known to everybody. In particular, each sage understands, in which vertex each
of the others sages is located. The referee performs the following test with the sages. He puts a hat on the head of
each sage, the hat is taken from the sage’s chest. Each sage sees only the hats of the sages located in the neighbouring
vertices of the graph, he does not see his own hat and does not know its color. The sages cannot communicate during
the test. At the command of the referee each of the sages writes names of several colors on his paper simultaneously
(how many colors the sages has to mention, is determined by the additional rule). We say that the sages have passed
the test successfully = “have won”, if at least one of them wrote the color of his hat in his paper.

The sages have been informed of the rules of the test before the testing and they have the possibility to hold a
meeting, in which they must to define their public strategy. The publicity means that all the participants, including the
referee, know this strategy. The strategy of the sages has to be deterministic, that is each sage has to write colors on
his paper looking only the colors that he sees on his neighbours. We call the strategy winning if for any hats placement
at least one sage will guess correctly the color of the hat on his head, i. e. mention this color in the his list of guesses.
We say that the sages win, if they have a winning strategy, and that they lose, if they have not.

Therefore, the Hats game is not a game in a sense as it is ordinarily understood. This game lasts only one move.

1.1. The referee puts a hat of white, blue, red or green color on the head of each of two sages. Each
of them sees the hat of the other, but does not see his own hat. Each of them writes on his own paper
two colors simultaneously. They try to guess correctly the colors of their own hats. Prove that the
sages can come to an agreement in the meeting before the test in such a way that at least one of them
will guess correctly.
1.2. The referee puts a hat of five possible colors on the head of each of two sages. Each of them
sees the hat of the other, but does not see his own hat. Each of them try to guess correctly the
color of his own hat. The first sage writes on his own paper two colors and the second — three colors
simultaneously. Prove that the sages can come to an agreement in the meeting before test in such a
way that at least one of them will guess correctly.
1.3. Five sages stand around the non-transparent baobab. Shah has put red, blue, yellow or green
hat the head of each of the sages. Sage does not know the color of his own hat and sees only the two
neighbouring sages. As usual, without any communication each sages must makes one assumptions
about the colors of his hat. But they fear be too lucky. How they should act to guarantee that for any
placement of hats no more than two sages guess correctly the colors of their hats?
1.4. Sultan examines six court sages. By the rule of the examination the sultan locates 5 sages in 5
pits positioned around a circle, and locates the sixth sage in the tower in the center of the circle. The
sultan writes one of the numbers 1, 2 or 3 on the forehead of each of the first five sages and writes a
number from 1 to 243 on the forehead of the central sage. The sage in the tower sees the numbers of
all the other sages, and these sages see his number (but do not see each other). All the sages must
simultaneously try to guess correctly their numbers: the sages in the pits must say two numbers and
the sage in the tower — one number. The sultan has explained to the sages the rules of the examination
beforehand and has given time to communicate before the beginning of the examination. Can the sages
act so that at least one of them certainly guess correctly his number?
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We identify a vertex of graph G and the sage located in it. We assume that the colors are numbered by 0, 1, 2,
3, . . . and that the chest of sage v contains hats of colors from 0 to some number h(v)− 1.

The Hats game is the triple 〈G, h, g〉, where G = 〈V,E〉 — a graph, h : V → N — a function that for each vertex
v equals the number of colors of hats keeping in the chest in this vertex, g : V → N — a function equal to the number
of guesses of each sage. We call function h a “hatness”, and g — a function of guesses or the number of attempts. For
each non negative integer h we denote by ?h the function on V possessing the constant value h. Instead of the notation
〈G, h, ?1〉 we will use shorter notation 〈G, h〉.

1.5. Prove that if the game 〈G, h, g〉 is winning, then for each non negative integer k the game
〈G, k · h, k · g〉 is winning, too.
1.6. Game 〈G, h, g〉 is given. Let K ⊂ G is anticlique (a set of vertices such that there is no edge
connected any pair of them) and for each v ∈ K h(v) > g(v). Prove that there exists a hats placement,
for which none of the sages in K guesses correctly.
1.7. Let h and g be natural numbers, G = 〈G, ?h, ?g〉 be a winning game, r′ 6 h

g
be a rational number.

Prove that there exist natural numbers h′ and g′ such that h′

g′
= r′ and game 〈G, ?h′, ?g′〉 is winning.

1.8. Formulate and prove the analogue of the previous statement for non-constant functions of hatness
and guessing.
1.9. Denote by Kn a complete graph on n vertices. Prove that the game 〈Kn, h, g〉 is winning if and
only if ∑

v∈Kn

g(v)

h(v)
> 1.

2 Paths and trees
The theory of Hats game on the complete graph K3 is given by the problem statement 1.9. Now consider a path P3

which is less complicated graph.

2.1. Prove that the sages lose in the game 〈P3, ?3, ?1〉.

2.2. a) Prove that the game
3
10

3
10

3
5
is winning (the numerator is the number of guesses, and the

denominator is the hatness).

b) Prove that the game
3
11

3
10

3
5
is losing.

c) Prove that the game
s

t(s)
s

t(s)
s

t(s)
is losing, where t(s) = s2 + s+ 1.

Let G be a graph and s be a non negative integer. Denote by HGs(G) the s-hat number of G, i.e. the maximum
number of hats h for which the game 〈G, ?h, ?s〉 is winning. For s = 1 this number is called hat number of G and is
denoted by HG(G).

2.3. Prove that for any non negative integers n and s the game
s
2s

A
· · · on path Pn is losing.

Here all vertices except the leftmost vertex A have hatness 4s− 1 and s guesses.
2.4. Prove that one can find n such that HG2(Pn) = 6, HG3(Pn) = 10, HG4(Pn) = 14.
2.5. Prove that for any non negative integer s the game 〈Pn, ?(4s− 2), ?s〉 is winning for n > 2s.
2.6. a) Let t(s) = s2 + s+ 1. Prove that for each tree T the game 〈T, ?t(s), ?s〉 is losing.

b) Len K1,n be “a star” graph (i.e. a tree consisting of a root and n leaves). Prove that for
sufficiently large n the game 〈K1,n, ?(s

2 + s), ?s〉 is winning.
c) Prove that for any non negative integer h there exists integer n such that the game on graph

K1,n is winning if all the sages in pendant vertices have one guess and hatness 3, and the central sage
has 2 guesses and hatness h.
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3 Constructors

3.1. Let 〈G, h, g〉 be a winning game, A1 and A2 be vertices of G, not connected with an edge and
such that h(A1) = h(A2). We glue vertices A1 and A2 of G into one new vertex A, denote by G̃ the
obtained graph. Let functions h̃ and g̃ defined on the set of vertices of G̃ coincide with h and g in all
vertices except A1 and A2, and h̃(A) = h(A1), g̃(A) = g(A1) + g(A2). Then the game 〈G̃, h̃, g̃〉 is also
winning. (And then if the game 〈G̃, h, g̃〉 is losing, then the game 〈G, h, g〉 is losing too.)

Let G1 = 〈G1, h1, g1〉, G2 = 〈G2, h2, g2〉 be two games such that V1 ∩ V2 = {v}. Let G = G1 +v G2 be the union of
graphs G1 and G2, in which both vertices v are glued into one new vertex. Define functions h, g : V1 ∪ V2 → N:

h(u) =

{
hi(u), u ∈ Vi \ {v}, (i = 1, 2),

h1(v)h2(v), u = v,
g(u) =

{
gi(u), u ∈ Vi \ {v}, (i = 1, 2),

g1(v)g2(v), u = v.

We say that the game G = 〈G, h, g〉 is a product of games G1 and G2 and denote it by G1 ×v G2 (fig. 1).

v v

G1
G2

h1(v)

h2(v)

v

G1 G2

h(v) = h1(v)h2(v)

Figure 1. The product G1 ×v G2

3.2. The theorem about the product. If the sages win in games G1 and G2, then they also win in game
G1 ×v G2.
3.3. Let G = G1 +A G2, where G1 and G2 are graphs, for which V (G1) ∩ V (G2) = {A}. Let games
G1 = 〈G1, h1, g1〉 and G2 = 〈G2, h2, g2〉 be losing, and the following conditions hold:

g1(A) = g2(A) = s, h1(A) > h2(A) = s+ 1.

Then game G = 〈G1 +A G2, h, g〉 is losing, where

h(x) =

{
hi(x), x ∈ Vi \ {A} (i = 1, 2),

h1(A), x = A,
g(x) =

{
gi(x), x ∈ Vi \ {A} (i = 1, 2),

s, x = A.

3.4. A half-edge removal. Let 〈G, h, g〉 be a winning game, AB be an edge of graph G, G̃ be the
graph obtained from G by replacing edge AB by directed edge B → A (i e. sage A does not see sage
B, but B sees A). Let function g̃ on the vertices of graph G coincide with g in all vertices except A,
and g̃(A) = h(B)g(A). Then game 〈G̃, h, g̃〉 is winning too. (And therefore, if game 〈G̃, h, g̃〉 is losing,
then 〈G, h, g〉 is also losing.)
3.5. Substitution theorem. Let G1 = 〈G1, h1, g1〉 be G2 = 〈G2, h2, g2〉 be winning games. Let A be an
arbitrary vertex of graph G2. Consider the new graph G obtained from G2 by substitution of graph
G1 on the place of vertex v (each vertex G1 is connected with former neighbours of vertex A by new
edges, see fig. 2). Then game 〈G, h, g〉 is winning, where

h(u) =

{
h2(u), u ∈ V (G2) \ {A},
h1(u)h2(A), u ∈ V (G1),

g(u) =

{
g2(u), u ∈ V (G2) \ {A},
g1(u)g2(A), u ∈ V (G1).

3.6. Substitution with reducing. Let G = 〈G, h, ?s〉, G ′ = 〈G′, h′, g′〉 be winning games. Let A be a
vertex of graph G′, and h′(A) = s. Let 〈G̃, h̃, g̃〉 be the winning game obtained by the substitution of
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A
−→

A :=

Figure 2. Substitution of a graph on the place of vertex A.

game G on the place of vertex A to game G ′ (as in problem 3.5). By the rule of the substitution for
all substituting vertices v

h̃(v) = h(v)h′(A) = s · h(v), g̃(v) = g(v)g′(A) = s · g′(A).

Consider new functions h∗, g∗ on graph G̃, which differ from h̃, g̃ only by the values in substituting
vertices v, and this difference is the cancellation by s:

h∗(v) = h(v), g∗(v) = g′(A).

Then game 〈G̃, h∗, g∗〉 is also winning.
3.7. Blowing up of a vertex. Let G = 〈G, h, g〉 be winning game, A ∈ V (G), G̃ be the graph obtained
from G by the substitution of clique B consisting of g(A) vertices on the place of vertex A. Then game
〈G̃, h̃, g̃〉 is also winning, where

h̃(v) =

{
h(v), v ∈ V (G) \ {A},
h(A), v ∈ B,

g̃(v) =

{
g(v), v ∈ V (G) \ {A},
1, v ∈ B.

4 “Petals” and “petunias”
We define a petal graph to be a graph G obtained from a path by adding a vertex v adjacent to every vertex of this
path, see fig. 3, we say that v is the stem of G.

Then, we define a petunia to be a graph constructed in the following way. Take two petals L1 and L2, denote one
vertex in each of them by v1, and construct a graph M2 = L1 +v1

L2. After that consider graph M2 and a new petal L3

denote one vertex in each of them by v2, and construct a graph M3 =M2 +v2
L3 and so on.

A royal petunia is a petunia (рис. 4), for which the vertex vi in each step of its construction were chosen as the stem
of petal Li+1.

4.1. Let G be a petal of n vertices, see fig. 3, let the stem has hatness 2 and the other vertices have
hatness 7. Prove that the sages lose in the game 〈G, h〉.

. . .

Figure 3. A petal of n vertices Figure 4. A royal petunia

4.2. Let G be a petal of n vertices, f(s) = s2 + s. Prove that HGs(G) 6 f(f(s)).
4.3. Let M be a petunia, hs be maximum integer such that the game 〈M, ?hs, ?s〉 is winning. Prove
that hs 6 f(f(f(s))).
4.4. a) Prove that HGs(G) = 4s(s + 1) − 2, where G is a petal of n vertices for sufficiently large n
(fig. 3).

b) Prove the same equality if G is a royal petunia that hat sufficiently big petals.
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5 Problems after intermediate finish

To section 1

5.1. Let K1,n be a “star” graph, and h = (h0, . . . , hn), g = (g0, . . . , gn) be arbitrary functions of hatness
and number of attempts, where 1 6 gi 6 hi for all i, the zero index corresponds to the central vertex
of the graph. Prove that the existence of k, for which 〈K1,n, k · h, k · g〉 is winning, is equivalent to the
inequality

g0
h0

>
n∏

i=1

(
1− gi

hi

)
.

To section 2

5.2. Let h and g be positive integers, and g2−3gh+h2 < 0. Prove that game 〈P3, ?h, ?g〉 is winning.
Fractional hat guessing number of graph G we call the value µ̂(G) = sup{hg : 〈G, ?h, ?g〉 is winning}. As it follows

from problem 1.9, HG(Kn) = µ̂(Kn) = n, HGs(Kn) = sn. In the general case, µ̂(Kn) > 1
sHGs(G) > HG(G).

5.3. Prove that µ̂(K3) = 3+
√
5

2
.

To section 3

5.4. Let 〈G2, h2〉 be a losing game, H2 ⊂ G2 be a clique in G2. Let G1 be a complete graph. Define a
hatness function h1 on it in such a way that the relation(∑

u∈G1

1

h1(u)

)(∏
v∈H2

h2(v)

)
< 1

holds. Let G be the graph obtained by union of graphs G1 and G2 with adding all edges between
vertices G1 and H2 (fig. 5). Prove that game 〈G, h〉 is losing if

h(v) =

{
h1(v), v ∈ G1,

h2(v), v ∈ G2.

G1

H2

G2

G

Figure 5. Example to problem 5.4. The number of vertices in G1 and H2 should not necessarily coincide

5.5. Let G = 〈G, h〉 be a losing game, A be an arbitrary vertex of graph G. Consider graph G′ =
(V ′, E ′) obtained by adding to graph G new pendant vertex B: V ′ = V ∪ {B}, E ′ = E ∪ {AB}. Then
the sages lose in game 〈G′, h′〉, where h′(B) = 2, h′(A) = 2h(A)−1 and h′(u) = h(u) for other vertices
u ∈ V .
5.6. Let G = 〈G, h, g〉 be a game, a vertex A ∈ V (G) be connected with all other vertices of G,
h(A) = s + 1, g(A) = s, and G ′ = 〈G \ {A}, h′, (s + 1) · g′〉, where h′ = h

∣∣∣
V (G)\{A}

, g′ = g
∣∣∣
V (G)\{A}

.

Then the games G and G ′ are equivalent.
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To section 5

5.7. a) A winning graphG contains a “long bridge” — two-link path ABC, such that after removing this
path the graph falls into two components of connectivity: G1 (containing vertex A) and G2 (containing
vertex C). Let hatness of vertex B equals 5. Prove that at least one of the games 〈G1, h

∣∣
G1
〉, 〈G2, h

∣∣
G2
〉

is winning.
b) Let graph G̃ is obtained by subpartition of an arbitrary graph G (i. e. each edge of graph G has

been replaced by two-link path). Prove that game 〈G̃, ?5〉 is losing.
5.8. Let G = 〈G, h〉 be a winning game, and it is maximal in the following sense: when hatness
function increase in any vertex, the sages lose and, besides that, there does not exist a subgraph of G,
on which the sages can win with hatness function h. Suppose that graph G contains edge-bridge AB.
Prove that game G can be represented as the product of games.
5.9. Sages A and B have 1 guess, see each other and all other sages in the graph (and the others
see them), h(A) = 2, h(B) = 3. Prove that if to replace these two sages by one sage C that sees the
others, and the others see him, and h(C) = 6, g(C) = 5, then the result of the game does not change.
5.10. Given natural numbers s and d. LetG be an arbitrary graph, the vertices of which are partitioned
into two sets V (G) = A∪B, and each vertex of A has no more than d neighbours from B. Prove that
HGs(G) 6 HGs′(G[A]), where s′ = s(HGs(G[B]) + 1)d, G[A] and G[B] are induced subgraphs on sets
A and B.
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Solutions

1.1. Let us call white and red colors light, and blue and green colors dark. Then let the first sage
write both dark colors, if he sees on the second a light color, and vice versa; and the second sage write
both light colors, if he sees on the first a light color, and vice versa. It is not difficult to understand
that at least one of the sages guesses correctly.

1.2. Renumber the hat colors from 1 to 5. Then let the first player write colors under the assumption
that the sum of the numbers on the hats of the first and the second sages gives remainder 0 or 1 mod
5, and the second — under the assumption that the same sum gives remainder 2, 3 or 4 mod 5. Since
the sum really gives some remainder, the sage with the correct assumption guesses correctly his color.

1.3. First remind how to play the game, when there are only two sages: the hats can be colored in only
two colors (denote the colors by 0 and 1) and it is required that somebody necessarily guessed correctly.
Here is a strategy: one sage (call him equalizer) checks hypothesis “the hat colors are identical”, the
other (distinguisher) — “the hat colors are different”. Note that by this strategy for any hats placement
one of the sages guesses correctly and the other does not.

Consider a visibility graph: the sages are vertices, the pairs of neighbouring sages are edges, then
this graph is a cycle on five vertices. Denote its edges by a, b, c, d, e. We assume that the color of
sage’s hat is a two-digit binary number: 00, 01, 10 or 11; writing this number we will mark its bits by
the labels of the edges incident to the vertex. For example, if there are two outgoing edges a and b
from the vertex, then we subscribe one of the bits “a”, and the other — “b” (the order of labels is not
important, all the neighbours of the sage see this labelling).

Let the sages at the endpoints of each edge come to agreement, who on this edge is equalizer, and
who is distinguisher. The guessing on each edge x happens as follows: each sage on this edge looks
only at bit x of his neighbour’s color and calculates the color of his own bit x in accordance with his
role on this edge. Therefore, each sage casting a glance to the left and to the right, calculates both
bits and names the obtained color as his answer.

It is evident that a sage guesses correctly the color of his hat only if he has guessed correctly both
bits. Since the graph contains only 5 edges, only 5 bits have been guessed correctly, and hence, at
most two sages have guessed correctly the colors of their hats.

1.4. Put into correspondence to each color of the central sage the sequence of 5 digits, each of which is
1, 2 or 3. The strategy of i-th sage in pit: look at i-th digit of the central sage and name the other two
digits. The strategy of the central sage: name the color, i-th digit of which is equal to the digit of i-th
sage from pit. If no sage from pit has guessed correctly, then the central guesses his color correctly.

1.5. For each sage v consider k · h(v) hat colors and split them into h(v) groups containing k colors
each, we call them megacolors. Then in game 〈G, k · h, k · g〉 each sage v can understand megacolors of
all his neighbours, and, according to the strategy for game 〈G, h, g〉, name g(v) of his own megacolors.
But these g(v) megacolors correspond to k · g(v) usual colors. It is not difficult to see that if the
strategy for game 〈G, h, g〉 is winning, then the obtained strategy is winning too.

1.6. Give arbitrary hats to the sages that are not from K. Then all answers of the sages from K
according the strategy are determined. It remains to give a hat to each of them such that he will not
guess correctly.

1.7. Let r′ = p
q
. If G = 〈G, ?h, ?g〉 is winning, then game 〈G, ?ph, ?pg〉 is also winning. And since

p
q
6 h

g
, then pg 6 qh, whence game 〈G, ?ph, ?qh〉 is also winning, because the increasing of the number

of attempts cannot destroy the working strategy.Then h′ = ph, q′ = qh are the desired.

1.8. Let G = 〈G, h, g〉 be a winning game, r′ : V → Q be a function such that 0 < r′(v) 6 h(v)
g(v)

for

all v. Prove that there exist functions h′ and g′, for which h′(v)
g′(v)

= r′(v) for all v, and game 〈G, h′, g′〉
is winning.
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Proof. Let r′(v) = p(v)
q(v)

. Denote P =
∏
v

p(v). Then game 〈G,P · h, P · g〉 is winning by problem 1.5.

Since p(v)
q(v)

6 h(v)
g(v)

, then by increasing the number of attempts in some vertices we obtain a winning
game

〈
G,P · h, P

p
· qh
〉
. Therefore, h′ = P · h, g′(v) = P

p(v)
· q(v)h(v) are the desired.

1.9. “If ” case. Note that sage v guesses correctly in g(v)
h(v)

fraction of placements of all hats. And since
in each placement at least one sage guesses correctly, the sum of these fractions is at least 1.

“Only if ” case. We will show that if the inequality holds, then the sages have a winning strategy.
Let H =

∏
v

h(v). Code the hat colors by numbers from 0 to H − 1: for each sage v let the possible

color i ∈ {0, 1, . . . , h(v) − 1} of his hat correspond to the remainder iH
h(v)

modulo H. In other words
the set of reminders

0,
H

h(v)
,

2H

h(v)
, . . . ,

(h(v)− 1)H

h(v)
(mod H). (∗)

is a set of possible hats colors of sage v. When the hats placement is given, let S be the sum of numbers
of all hats modulo H. The sages do not know the value of S, but each sage v can calculate value Sv

that is the sum of the numbers of the hats, that the devilkin has given to the other sages, modulo H.
The strategy of the sages is the following: each sage v checks the hypothesis S ∈ [av, bv), where

[av, bv) is an interval of length Hg(v)
h(v)

, containing Hg(v)
h(v)

consecutive remainders modulo H, these intervals
the sages choose in their meeting before the test. In order to check the hypothesis sage v has to solve
the “inequality”: he finds, for which reminder x the inclusion Sv +x ∈ [av, bv) is satisfied. After solving
this problem he obtain a list Hg(v)

h(v)
of possible values of x, but this list contains only g(v) remainders of

the form (∗). Then sage v will name g(v) corresponding to them colors.
The given inequality in the problem statement is equivalent to the fact that the sum of lengths of

all segments [av, bv) is at least H. If it holds, then, evidently, we can assign to each sage one segment
in such a way that each remainder modulo H belongs to at least one of the segments. It guarantees
the victory of the sages: whatever the sum of hats is equal, at least one of the sages will make right
assumption and will guess correctly.

2.1. The sages cannot win even in game 〈P3, ?3k, ?k〉. It follows from the inequality of problem 5.1.

2.2. a) Denote the sages by A, B and C:
3
10

3
10

3
5

A B C
. We will demonstrate the winning strategy for

the sages. Let sage C name colors [ cB
2

], [ cB
2

] + 1, [ cB
2

] + 2 mod 5, and sage A name colors cB, cB + 3,
cB + 6 mod 10. Sage B, casting glances at the neighbours, suspects that they both do not guess
correctly only if

cB /∈ S = {cA, cA − 3, cA − 6, 2cc, 2cC + 1, 2cC + 2, 2cC + 3, 2cC + 4, 2cC + 5}.

It remains to note that for the remainders modulo 10 the inclusion

{cA, cA − 3, cA − 6} ⊂ {2cc, 2cC + 1, 2cC + 2, 2cC + 3, 2cC + 4, 2cC + 5}

is impossible for any cA and cC . Therefore, set S contains at least 7 elements, and sage B can name
in his answer the three (or less) remainders, not belonging to the set.

b) For every possible color cB sage A makes three guesses, i. e. he names 30 answers of 11-element
set of A’s colors. Therefore, he names some color 1 or 2 times. Give the hat of this color to sage A.
Then sage B will suspect, for which 8 colors of his hat sage A do not guess correctly. But the game
3
8

3
5

B C
is losing, and any strategy that is used by our sages in the above situation, is immediately

reduced to the strategy in this losing game.

c) It is sufficient to verify that game
s

t(s)
s

s+1
s

t(s)

A B C
is losing. Apply the statement of the constructor

“removing a half-edge” (problem 3.4) for vertex B, making this vertex invisible for A and C. As a result
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vertices A and C see nobody, have hatness s2 + s + 1 and s2 + s guesses. Therefore, the referee can
give them such hats that they will not guess correctly. After that the strategy of sage B is completely
determined, he has hatness s+ 1 and s guesses, so he will not guess correctly too.

Another solution can be obtained by standard “probabilistic” observations: the number of hats
placements, for which sage v guesses correctly, does not exceed fraction g(v)/h(v) of the total number
of placements. We need only note that for our graph 3s

s2+s+1
< 1 for s > 1.

2.3. For each natural we s prove the statement by induction on n. Base case n = 1, i. e. the loss in

game
s
2s

s
4s−1

A B
follows from the statement of problem 1.9.

Induction step. Consider three leftmost vertices A, B, C. Consider all possible hat color assign-
ments to sage B. Sage A names s(4s− 1) colors from set {0, 1, 2, . . . , 2s− 1} in total. Therefore some
color cA occurs in his answers at most [ s(4s−1)

2s
] = 2s − 1 times. Give to sage A the hat of this color.

Then sage B sees color cA and knows, for which 2s−1 colors of his hat sage A names color cA. So sage
B may assume that the color of his own hat is taken from set CB consisting of 4s− 1− (2s− 1) = 2s
colors. At that moment the devilkin (the other name of the referee) declares that in current hats
placement the color of B’s hat belongs to CB and inform the other sages what is the set CB. Then the
game from induction step takes place on the remained graph and it is losing.

2.4. The inequality HG2(P4) > 6 holds because the product of games
2
6

2
3

v1
×v1

1
2

1
2

v1 v2
×v2

2
3

2
6

v2
is

winning by theorem of product.

The inequality HG3(P6) > 10 holds since the game
3
10

3
10

3
5

v1
×v1

1
2

1
2

v1 v2
×v2

3
5

3
10

3
10

v2
is winning

(the leftmost and rightmost multipliers are winning by problem 2.2).

Finally, the inequality HG4(P10) > 14 holds as a result of the fact that game G(u)×u

1
2

1
2

u w
×wG(w)

is winning, where G(u) =

4
15

4
5

v1
×v1

1
3

2
3

v1 v2
×v2

2
5

4
14

4
7

v2 u
.

In view of the statement of problem 2.3 any game in the form
s

4s−1
s

4s−1
s

4s−1

A
· · · is losing (as compared

to problem 2.3 here the hatness of vertex A has been increased). For s = 2, 3, 4 this gives, by the way,
for all n the inequalities HG2(Pn) 6 6, HG3(Pn) 6 10, HG4(Pn) 6 14.

2.5. Consider a hatness function h on graph Ps:

h(vi) =

{
4s− 2 for 1 6 i < s,

2s− 1 for i = s.

To prove the statement of the problem it is sufficient to verify that game 〈Ps, h, ?s〉 is winning. For
construction of sages’ strategy we need the following auxiliary statement — a theorem about game
with hint.

Let game G = 〈G, h, g〉 be winning under condition that the devilkin makes the following hint
during the game. For one vertex B ∈ V (G) a natural number wB 6 h(B) is fixed and it is known that
the devilkin will come to sage B during the game and will tell him a set of wB consecutive remainders
(i. e. the set of remainders in the form x, x+ 1, . . . , x+wB mod h(B)), containing the color of his hat;
the other sages will not hear this hint. Vertex B, number wB and the rule of proclaiming of the hint
are known to the sages beforehand. Denote a game with hint by 〈G, h, g, B, wB〉.

For example, game 〈G, h, g, B, wB〉 is certainly winning in the case wB 6 g(B).

T h e o r em. Let graph G contain vertex B, and graph G̃ be obtained from graph G by appending
new vertex A and edge AB. Let hatness function h̃ and function of the number of guesses g̃ be
given on graph G̃, and let h = h̃

∣∣∣
V (G)

, g = g̃
∣∣∣
V (G)

. Let for some natural numbers wA, wB such that

g(A) 6 wA 6 h(A) and g(B) 6 wB 6 h(B), the conditions hold:
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The colors of sage B

The
colors
of

sage
A

0 1 2 wB . . . h(B)

0
1
2

. . .

wA

. . .

h(A)

L L L L L
L L L LL

L L L L L
L L L L L

L L L L L
L L LL L

L L L L L
L L L L L

L LL L L
L L L L L

L L L L L
LL L L L

L L L L L
L L L L L

Figure 6. The strategy of sage A. Here h(A) = 14, h(B) = 14, wA = 6, wB = 5. In the construction of the table it is
not required, but to complete the picture one can assume that g(A) = 4, g(B) = 4.

(i) game with hint 〈G, h, g, B, wB〉 is winning,
(ii) wB · h(A) is divisible by h(B),
(iii) wAwB > (wA − g(A))h(B).

Then game with hint 〈G̃, h̃, g̃, A, wA〉 is winning.
P r o o f. To describe the strategy of sage A, construct table h(A) × h(B), in which some squares

are empty, and the others contain letters “L” by the following rule. Number the rows of the table by
numbers from 0 to h(A)− 1, we identify the numbers of rows with possible colors of A’s hat. Number
the columns of the table by numbers from 0 to h(B) − 1, we identify the numbers of columns with
possible colors of B’s hat. For each i (0 6 i 6 h(A)− 1) we put letters “L” in the cells of i-th row in
columns with numbers

iwB, iwB + 1, . . . , iwB + wB − 1 (mod h(B)) (1)

(i. e. wB letters “L” in total), see fig. 6. One may consider the obtained table as toroidal: calculations
modulo h(B) in rule (1) allow to identify h(B)-th column with zeroth column, and condition (ii) allows
to identify h(A)-th row with zeroth row.

L emma. Consider arbitrary wA consecutive rows of this table (taking into account its toroidal
nature, i. e. one can take several lower rows and the corresponding number of upper rows). Then each
column of the table contains at most g(A) empty cells in these rows.

Proof. In view of toroidal nature of the table it is sufficient to verify this statement for the set of first
wA rows. Consider j-th column. It is evident that this column contains letter “L” in the entry at i-th
row (0 6 i 6 wA − 1) if and only if

0 6 (j − iwB) mod h(B) 6 wB − 1. (2)

In the integer sequence di(j) = j − iwB the distance between d0(j) and dwA−1(j) is equal to

(wA − 1)wB.

By condition (iii) the inequality holds:

(wA − 1)wB > (wA − g(A))h(B)− wB,

which means that for each j inequality (2) has at least wA − g(A) solutions for variable i, i. e. each
column of the table contains at least wA − g(A) letters “L” in the chosen wA rows. Thus, it contains
at most g(A) empty squares.
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The hint that sage A receive from the devilkin is actually a set of wA consecutive rows of the table.
Then the strategy of sage A is to name the colors, corresponding to the numbers of the rows with
empty cells in j-th column of the table, where j is the color of B’s hat. Sage A can do it, because by
lemma the rows indicated in the devilkin’s hint contain at most g(A) empty cells in j-th column.

Describe the strategy of sage B. He sees color i of the hat of sage A and concludes that A does
not guess correctly only in the cases, when B’s color corresponds to the columns containing letter “L”
in i-th row. Therefore, B may think that his own color is given by the set of these wB columns, and,
receiving this hint, he plays with this hint by the strategy for graph G.

The theorem is proven.

Turn to the problem solution. We present the strategy for the sages.
For k = 1, 3, . . . , s−1 denote by Pk a path on vertices v1, . . . , vk (it is a subgraph of Ps). Function

h allows us to define the hatnesses of vertices v1, . . . , vk. Check by induction on k (1 6 k 6 s) that
game with hint 〈Pk, h, ?s, vk, s + k − 1〉 is winning (remind that in this game the devilkin pointed to
sage vk the range of s+ k − 1 consecutive colors containing the color of his hat).

Base case k = 1: in game 〈P1, h, ?s, v1, s〉 the only player v1 wins thanks to hint.
Inductive step k → k+ 1, k 6 s− 2. Let game with hint 〈Pk, h, ?s, vk, s+ k− 1〉 be winning. Then

by the proven theorem game 〈Pk+1, h, ?s, vk+1, s + k〉 is winning too: here B = vk, wB = s + k − 1,
G = 〈Pk, h, ?s, vk, s + k − 1〉, A = vk+1, wA = s + k, G̃ = 〈Pk+1, h, ?s, vk+1, s + k〉. Condition ii) of
theorem holds because h(A) = h(B), and the condition iii) is provided by the inequality

wAwB = (s+ k − 1)(s+ k) >
(∗)
k(4s− 2) = (wA − g(A))h(B),

where inequality (∗) is reduced to evident inequality (s− k)2 > s− k.
The last step k = s − 1 → s also holds by the proven theorem. It is verified similarly with the

only difference that condition ii) holds due to the fact that number wB = 2s− 2 is even, and therefore
wB · h(A) = (2s− 2)(2s− 1) is divisible by h(B) = 4s− 2.

Thus, we have proved that game with hint 〈Ps, h, ?s, vs, 2s−1〉 is winning. But then game 〈Ps, h, ?s〉
is evidently winning too.

2.6. a) Solution 1. Induction by the number of vertices of the tree. Inductive step. The adding to
the losing tree next pendant vertex can be interpreted as gluing of two losing games by constructor of

problem 3.3, where one of the games is the game on tree 〈T, ?t(s), ?s〉, and another one is
s

s+1
s

s2+s+1
.

Solution 2. We prove the statement by induction on the number of tree vertices. Base case n = 1
is trivial. Prove the inductive step.

Let the sages choose some strategy f in game 〈T, ?t(s), ?s〉. The following two propositions hold.
P r o p o s i t i o n I. For each sage A at least t(s)− s colors of his hat can be used for construction of

“disproving” hats placements. By the other words, one can choose t(s)− s colors and for each of them
construct a hats placement, in which A’s hat has the chosen color and none of the sages guesses.

P r o p o s i t i o n II. For any sage A and any set C of s + 1 colors (of his hats) one can define the
hat colors on set N(A) (the set of neighbours of A) in such a way that after appending any hat α ∈ C
for sage A to this placement one can supplement the obtained partial hats placement to the hats
placement on the whole tree T so that none of the sages on T \ {A} guesses correctly.

It is clear that proposition I follows from II. Besides that, from II the inductive step immediately
follows: take any sage A and any set C of s+ 1 colors, then proposition II provides the hats placement
on set N(A), which uniquely determines what s colors are named by sage A in this game. Give to
sage A a unnamed color from set C, then A will not guess correctly. By proposition II one can make
so that the other sages will not guess correctly.

Proof of proposition II.
Take an arbitrary sage A and an arbitrary set C of s+1 colors (of his hats). Conduct an experiment :

give any hat α ∈ C to sage A and remove him (in our mind) from tree T . The tree falls into connected
components, for which the inductive step holds. It is evident that each component contains one sage
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from N(A). Let B ∈ N(A) be one of these sages and TB be his connectivity component. Since we
have already defined the color of A’s hat, strategy f determines the strategy of sage B for game on
TB, the other sages from TB can use strategy f too. By proposition I this strategy can be disproved,
when one gives to sage B a hat of some set containing t(s)− s colors.

The above experiment can be conducted in s + 1 ways. The obtained games on TB differ by the
strategy of sage B and for each of these games we have a “disproving” set consisting of t(s)−s colors of
sage B. It remains to note that the intersection of these s+ 1 sets contains at least t(s)− (s+ 1)s = 1
elements, i. e. it is non empty. Assign the color from this intersection to sage B. Similarly, we will
treat with the other connectivity components. As a result we have built a hats placement on set N(A),
for which proposition II holds.

b) This solution is reported to us by S. Berlov. We prove that for n = (s2 + s)! the sages win. Let
A be the central sage. Consider an (s+ 1)× s table. Invite (s2 + s)! sages to play in our game and put
into correspondence each arrangement of numbers from 0 to s2 + s− 1 in this table to a separate sage.
The strategy of the sages is the following. Each “peripheral” sage finds in his table the row containing
number cA, and names all the numbers of this row. Further on, sage A for each number i from 1 to
(s2 + s)! checks whether somebody of the sages wins if cA = i (it can be easily checked, because A sees
the colors of all hats and knows the sages’ tables). Let i1, i2, . . . , ik be the list of “bad” values of cA,
for which none of “peripheral” sages wins. If k 6 s, then A just names these values, and the sages have
won. Suppose that k > s + 1. Since all possible tables are occurred among the tables of sages, there
exists sage B, for which the numbers i1, i2,. . . , is+1 are placed in different rows of his table. But then
one of the rows contains the number cB, and if this row contains number i`, then sage B wins when
cA = i`. Therefore color i` is not bad. A contradiction.

c) Similarly to p. b). By a “scrap-heap” we mean three heaps of stones containing h stones in total
(the stones are numbered from 0 to h− 1, and the heaps are numbered by 0, 1, 2, i. e. by possible hat
colors of peripheral sages, empty heaps are allowed). Let n be the number of all possible scrap-heaps.
Define the strategy of the sages on graph K1,n. Give a unique scrap-heap to each sage Bi. The strategy
of Bi is to name the number of heap containing the stone cA. The strategy of sage A is to enroll those
colors of his own hat, for which none of Bi has guessed correctly, and to name all listed colors. This is
possible because the list contains at most two colors. Indeed, if the list contains colors c1, c2, c3, then
consider any scrap-heap, in which stones c1, c2, c3 lie in the first, second and third heap respectively.
Without loss of generality one can assume that the owner of the scrap-heap has received a hat of the
first color. But then he certainly guesses correctly his own color, if sage A has received hat of color c1
that contradicts the definition of c1.

3.1. It is evident: on graph G̃ sage A at first has to name g(A1) colors by the strategy of vertex A1 in
graph G (taking into account the colors of the neighbours of A1 only), and then g(A2) colors by the
strategy of vertex A2 (looking only at the neighbours of A2). The sages, who see on graph G only one
of Ai, play as if A is this Ai. As for those sages, who saw in graph G both sages A1 and A2 and now
see only one sage A, they must play assuming that the hats of A1 and A2 have the same color.

3.2. The hatness of sage v is equal to h1(v)h2(v). So one can assume that the hat of sage v has
“composite color”, i. e. its color is an ordered pair (c1, c2), where ci is the color of v’s hat in game Gi.
Fix winning strategies for games G1 and G2 and build strategy for game G1×vG2. Let all the sages from
graph Gi \ {v} play by the winning strategy for game Gi (the neighbours of v from graph Gi look only
at component ci of the color of sage v). As for sage v, he plays by both strategies at once: looking only
at his neighbours in graph G1, sage v finds g1(v) first components of his color by the winning strategy
for game G1, and by the winning strategy for game G2 he finds g2(v) second components. Taking all
possible pairs of the founded colors, he makes g1(v)g2(v) = g(v) guesses.

The constructed strategy is winning, because either somebody in G1 \ {v} or in G2 \ {v} guesses
correctly, or v guesses correctly both components of his color.

3.3. Assuming the contrary let f be a winning strategy in game G. Denote by N1 the set of neighbours
of vertex A in graph G1. For any hats placement ϕ on the vertices of graph G1 the answers of all
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the sages from set V (G1) \ A are determined by strategy f . We will show that there exist s + 1 hats
placements ϕi (i = 1, . . . , s+ 1) on graph G1, such that for i 6= j

ϕi

∣∣
N1

= ϕj

∣∣
N1
, ϕi(A) 6= ϕj(A),

and such that if the sages from G1 play according strategy f , then for all these placements none of the
sages from V (G1) \ A guesses correctly.

For each hats placement α on vertices of N1 denote by C(α) the set of hat colors of sage A, such
that for all placements β on G1, for which

β
∣∣
N1

= α, β(A) ∈ C(α),

none of the sages from set V (G1)\A guesses correctly by strategy f . Suppose that the statement from
the previous paragraph does not hold. Then each set C(α) contains at most s colors. Consider then
the following strategy for game G1: let all the sages from G1, except A, play by strategy f , and sage
A name the colors from set C(α) (supplementing them by arbitrary colors, if C(α) contains less than
s elements). This strategy is winning, because if nobody in V (G1) \ A has guessed correctly, then a
hat from C(α) is on the head of A, and he guesses correctly. Contradiction.

Consider these s+1 placements ϕi. Fix a hats placement α = ϕi

∣∣
N1

on N1 and restrict ourselves to
only those hats placements on G2, where sage A receives a hat of one of s+ 1 colors ϕi(A), i = 1, . . . ,
s+1. Then strategy f defines the actions of the sages on graph G2, i. e. in losing game G2 subject with
the only restriction that in the case h1(A) > s+ 1 sage A by this strategy can name more than s+ 1
colors, i. e. more than his hatness in game G2. But in this case mention of “outsider” colors does help
to win. Therefore there exists disproving placement ψ on G2. If ψ(A) = ϕj(A), then ψ ∪ ϕj

∣∣
V (G1)\A

is
a disproving hats placement for strategy f in game G.

3.4. It is evident. At first, sage A on graph G̃ has to name the g(A) colors, which he names by the
strategy for graph G, when B’s hat is painted in the first color. After that sage A names the g(A)
colors, which he names when B’s hat is painted in the second color and so on.

3.5. For each natural N denote the set {0, 1, . . . , N − 1} by [N ] for short.
For each vertex u of substituted graph G1 define its color in game 〈G, h, g〉 as a pair from set

[h1(u)]× [h2(A)]. Let sage u look for the first component of his color by the strategy of game G1, and
the second component by the strategy of A in game G2. The neighbours of vertex A from graph G2

in new graph G see the whole subgraph G1, and therefore can determine, who has guessed correctly
the first component. Let B be the first of these sages (in lexicographical order). Then the vertices
of graph G2 \ {A} can play by the strategy of game G2, using the second component of color B as a
color of A. Since G2 is a winning game, some of the vertices win. If it is vertex from G2 \ {A}, then
it guesses correctly its color in graph G too. And if the winner of G2 was vertex A, then B correctly
found both components of its color.

3.6. For proof we modify the strategy from the previous solution. In view of this construction vertex v
after substitution gets a composite color from set [h(v)]× [h′(A)], and the strategy of sage v consists in
calculating both components of his color, i. e. he chooses s = g(v) colors c1, . . . , cs ∈ [h(v)], calculates
G′-component of his color, i. e. chooses g′(A) colors e1, . . . , eg′(A) ∈ [h′(A)], and after that he names
all the pairs of colors (ci, ej).

We will change the construction of substitution and describe how the sages play in changed situ-
ation. The change affects only the sages v ∈ G, we assign for these sages new hatness and number of
guesses: h∗(v) = h(v) and g∗(v) = g′(A). Therefore now v’s hat has a color from set [h(v)] (instead of
a composite color), that is interpreted by his neighbours from NG(v) and NG′(A) as G-component of
his color as before.

The strategy of each sage v ∈ G consists of two phases. The first phase: casting glances at the
neighbours in G, sage v calculates “G-component” of his color, i. e. a set consisting of s colors c1, . . . ,
cs ∈ [h(v)]. Further, sage v identifies the obtained set and [h′(A)] (by the rule ci 7→ i; remind that
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h′(A) = s). After that the second phase begins: he looks at his neighbours in graph G′ and apply the
strategy of sage A naming g′(A) colors from his newfound set [h′(A)].

It remains to describe strategy of the sages from NG′(A). They all see the whole graph G, so
they know, what set of colors each sage v has identified with set [h′(A)]. Besides that, they all know,
who from V (G) has guessed correctly G-component of his color. Let w be the first of these sages in
lexicographical order. Since sage w has guessed correctly G-component of his color, the color of his
hat belongs to the set [h′(A)], that he has constructed in the first phase. Then during the second
phase the sages of graph G′ \{A} simply play the winning strategy of game G ′, substituting w with its
constructed set [h′(A)] in the place of A, and sage w actually plays by this strategy too, as explained
above. As a result, somebody of them will guess correctly.

3.7. Each neighbour of A in V (G)\{A} now sees the whole set B, computes a “virtual color of sage A”

cA =
∑
v∈B

cv (mod h(A))

and plays by the strategy from game G. As for the sages from B, they take for themselves one answer
ai each from the strategy of sage A, and sage vi names color

ai −
∑

v∈B,v 6=vi

cv (mod h(A))

(therefore, i-th sage verifies hypothesis cA = ai).

4.1. Let B be the vertex of hatness 2. Apply for vertex B the statement of constructor “removing
half-edge” (problem 3.4) making this vertex invisible for the other vertices. Then the other sages do
not see B, have two attempts, and lose by the statement of problem 2.6 b). Giving them a disproving
hats placement, the referee will make so that sage B will not guess correctly too.

4.2. Fix number s. Consider the case, when the upper vertex has hatness s+ 1, and the other vertices
have hatness h. Acting as in the previous problem, we make the upper vertex invisible for the others,
as a result, the number of guesses of the vertices on path Pn−1 becomes equal to s(s + 1) = f(s). By
the statement of problem 2.6 b) the sages lose for h > f(f(s)). Thus ts 6 f(f(s)).

4.3. We will prove by induction on the number of petals that for h > f(f(f(s))) the game is losing.
The base case, one petal G, follows from the previous problem: game 〈G, ?h, ?s〉 is already losing for
h > f(f(s)).

But we need one more relative statement – a “modified base of the induction”: game 〈G, ?h̄, ?s〉 is
losing for h > f(f(f(s))), where ?h̄ denotes the hatness function that is equal to h in all the vertices
of petal G, except one vertex B for which h̄(B) = s+ 1.

Proof of the statement. If B is the upper vertex of petal G, then this is again the statement of
the base. Let B be an arbitrary vertex of petal on path Pn−1 (fig. 7, left). Using constructor “removal
of half-edge” (problem 3.4), make vertex B invisible for the other vertices. As a result the number of
guesses of its neighbours becomes equal to f(s). Now vertex B can be deleted from G, because nobody
sees it, it has hatness s + 1 and s guesses, so it is fated to fail in guessing. It can be easily seen that
the remained graph is a union of two petals with common upper vertex (or one petal, but this case is
trivial) and its vertices have s or f(s) guesses (fig. 7, center). Add to graph horizontal edge between
former neighbours of B (fig. 7, right), this edge can help to the sages to win. As a result, we have
obtained a petal, which vertices have hatnesses at least f(f(f(s))) and at most f(s) guesses. By the
statement of the base the sages nevertheless lose.

Now prove the inductive step. Consider petunia Mn = Mn−1 +vn
Ln. In view of modified statement

of the base game 〈Ln, ?h̄, ?s〉 is losing for h > f(f(f(s))), where we denote by ?h̄ the hatness function
that is equal to h in all the vertices of petal G, except vn, and hatness of vn is equal to s + 1. Game
〈Mn−1, ?h, ?s〉 is losing by the induction hypothesis. It remains to note that game 〈Mn, ?h, ?s〉 can be
obtained by constructor of problem 3.3 from losing games 〈Mn−1, ?h, ?s〉 and 〈Ln, ?h̄, ?s〉 and therefore
is losing too.
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B f(s) f(s)

f(s)

f(s) f(s)

f(s)

Figure 7. Removing of vertex B from petal G

4.4. a) Estimation HGs(G) < 4s(s + 1) − 1. Let A be the stem of the petal, h(A) = s + 1, and the
other vertices v have hatness h(v) = 4s(s+1)−1. It is sufficient to verify that game 〈G, h, ?s〉 is losing.
By the statement of problem 5.6, this game is equivalent to the game on path Pn, where all vertices
have hatness equal to 4s(s+ 1)− 1 and s(s+ 1) guesses. But this game is losing by problem 2.3.

Now we will prove that game 〈G, ?4s(s+ 1)− 2, ?s〉 is winning for sufficiently large n.
Let G0 = 〈Pk, ?4s(s+1)−2, ?s(s+1)〉. For sufficiently large k this game is winning by problem 2.5.
Similarly to the problem 2.6 c), one can prove that for any natural h there exists such natural n,

that game on graph K1,n is winning, if the hatnesses of all peripheral sages are equal to s + 1 and
they all have one attempt for guessing, and the hatness of the central sage is equal to h and he has
s attempts. Set h = 4s(s+1)−2 and choose suitable n. Substitute with reducing game G0 in the place
of each peripheral sage1. We obtain a winning game, where the hatnesses of all vertices are equal to
4s(s+ 1)− 2, the numbers of attempts are equal to s, and the graph is a subraph of a large petal.

b) As we have checked in p. a), game 〈G, h, ?s〉 is losing, where G is a petal with large number of
vertices, and h is the function defining hatness of the stem by s + 1, and the hatnesses of the other
vertices by 4s(s + 1) − 1. By the statement of problem 3.3 gluing of stem of such petal to a vertex
of another losing game with s guesses gives again a losing game. But royal petunia by definition is
constructed by consecutive stem’s glueings of petals! Therefore a game on a royal petunia with large
petals, where all the vertices have hatness 4s(s + 1)− 1 and s guesses, except the first (rooted) stem
with hatness s+ 1 and s guesses, is losing. It gives the estimation HGs(G) < 4s(s+ 1)− 1.

Then HGs(G) = 4s(s+1)−2, since this hatness is realized already on petals that are royal petunias
too though not very branchy.

5.1. “If” case. Fix one of h0 colors of the central sage’s hat. Then the strategies of the other vertices

are determined, and in
n∏

i=1

(hi − gi) cases none of pendant vertices guesses correctly. Therefore the

central sage must guess. But the central sage can do this only in g0
n∏

i=1

hi cases in total. We obtain an

inequality that is equivalent to the inequality from the condition.

“Only if” case. We will show that for N =
n∏

i=1

hi game 〈K1,n, (N · h0;h1, . . . , hn), (N · g0; g1, . . . , gn)〉
is winning.

Encode h0 · h1 · . . . · hn colors of the central sage by sets (c0; c1, . . . , cn), where 0 6 ci < hi. Let i-th
sage, when he sees color (c0; c1, . . . , cn), name colors ci, ci+1, . . . ci+gi−1 (mod hi). And let the central
sage look at the others and name all variants, in which none of them guesses correctly. How many are
there such variants? There are h0 variants for zeroth component and hi − gi variants for each of the

others. But the inequality from the condition is equivalent to the inequality h0
n∏

i=1

(hi − gi) 6 N · g0,
1We need here the following more general version of the constructor than that in problem 3.6.
Let G = 〈G, h, ?sg0〉, G′ = 〈G′, h′, g′〉 be winning games. Let A be a vertex of graph G′, and h′(A) = s. Let 〈G̃, h̃, g̃〉

be the winning game obtained by the substitution of game G on the place of vertex A to game G′ (as in problem 3.5).
By the rule of the substitution for all substituting vertices v

h̃(v) = h(v)h′(A) = s · h(v), g̃(v) = g(v)g′(A) = sg0 · g′(A).

Consider new functions h∗, g∗ on graph G̃, which differ from h̃, g̃ only by the values in substituting vertices v, and this
difference is the cancellation by s:

h∗(v) = h(v), g∗(v) = g0 · g′(A).

Then game 〈G̃, h∗, g∗〉 is also winning.
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thus the central sage has enough attempts.

5.2. Denote the sages by A, B and C:
g
h

g
h

g
h

A B C
. We present a winning strategy for the sages. Let

sage A name colors cB, cB+1, . . . , cB+(g−1) mod h, and sage C cB, cB+[h
g
], . . . , cB+[(g−1)h

g
] mod h,

where [x] denotes the rounding to the nearest integer. Therefore, if B’s hat is from the set

IA =
(
cA, cA − 1, . . . , cA − (g − 1)

)
mod h,

then sage A will guess correctly, and if B’s hat is from the set

IC =
(
cC , cC −

[h
g

]
, . . . , cC−

[
(g − 1) · h

g

])
mod h,

then sage C will guess correctly. It remains to prove that for sage B there are at most g colors not
covered by set IA ∪ IC or, equivalently, that

h− |IA| − |IC |+ |IA ∩ IC | 6 g.

Since |IA| = |IC | = g, it is equivalent to the inequality |IA ∩ IC | 6 3g − h.
Suppose that this statement is wrong and |IA ∩ IC | > 3g − h. Then there exists k such that both

numbers cC− [k · h
g
] and cC− [(k+ 3g−h) · h

g
] belong to IA∩ IC (the elements of IA∩ IC can be written

in two forms: cA − i = cC −
[
` · h

g

]
; the number ` that corresponds to the minimal possible i, can be

taken as k). Since both numbers belong to set IA, consisting of consecutive remainders, the distance
between them does not exceed g − 1:(

cC −
[
k · h

g

])
−
(
cC −

[
(k + 3g − h) · h

g

])
6 g − 1,

that is equivalent [
(k + 3g − h) · h

g

]
−
[
k · h

g

]
6 g − 1.

Getting rid of rounding, we obtain the corollary:

(k + 3g − h) · h
g
− 0.5− k · h

g
− 0.5 6 g − 1.

The last is equivalent to the inequality (3g − h) · h
g
6 g, i. e. 0 6 g2 − 3gh + h2, that contradicts the

condition.

5.3. By the statement of problem 5.1 the existence of k, for which game 〈P3, ?kh, ?kg〉 = 〈K1,2, ?kh, ?kg〉
is winning, is equivalent to the condition(

1− g

h

)(
1− g

h

)
6
g

h
.

For non-negative h it is equivalent to the inequality g2− 3gh+h2 6 0, that for 1 6 g 6 h is equivalent
to the inequality

h

g
6

3 +
√

5

2
.

Now the problem statement is evident.

5.4. Consider an arbitrary strategy of the sages in game 〈G, h〉. The product
∏

v∈H2

h2(v) enumerates

hats placements on H2. When we choose each of these hats placements, we fix strategy of the sages
on G1. For the fixed hats placement on H2 consider hats placements on G1. The sum

∑
u∈G1

1
h1(u)

estimates from above the fraction of those placements on G1, where at least one sage from G1 guesses
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correctly. Then the product
( ∑
u∈G1

1
h1(u)

) ∏
v∈H2

h2(v) estimates from above the maximum fraction of

those placements on G1, where at least one sage from G1 guesses correctly provided that each sage
makes

∏
v∈H2

h2(v) guesses. Therefore the inequality from the problem condition means that there exists

hats placement α on G1, for which none of sages from G1 guesses correctly, whatever hats were given
to the sages from H2. Therefore after assigning hats placement α to sages from G1, none of them
guesses correctly and the strategies of the other sages on graph G2 are completely determined and now
are suitable for game 〈G2, h2〉. Since this game is losing, hats placement α can be enlarged to hats
placement on G2, for which nobody from G2 guesses correctly too.

5.5. Let the sages have fixed a strategy on graph G′. We will construct a disproving hats placement
for this strategy. The strategy of sage A for each of 2h(B) − 1 possible colors of hat of B prescribes
to name one of two colors. Some of these two colors is named at most h(B) − 1 times. Give to sage
A the hat of this color, this will fix the strategy of sage B on the remained graph G. Now, to prevent
correct guessing of A, we give to B a hat of one of at least h(B) remained colors. Since game G is
losing, we can construct hats placement on graph G so that nobody on G will guess correctly.

5.6. If G is a winning game, we remove by problem 3.4 all half-edges
#  –

vA and obtain the winning game.
In this game A has s guesses, s+ 1 colors and no information, therefore we can assign A’s color such
that A does not guess. But now the remaining sages play the game G ′. Hence G ′ is winning.

If the game G ′ is winning, substitute G ′ in the winning game
s

s+1
1

s+1

A B
in place of vertex B by problem

3.6. We obtain a winning game G.

5.7. a) Let G be a losing game on path ABC where h(A) = h(C) = 2, h(B) = 5. If both games
were losing, then the initial game would be obtained from these games and game G by constructor of
problem 3.3 (where s = 1, g1 = g2 = ?1) and were losing too.

b) Set V (G̃) consists of the vertices of graph G and the set of new vertices V1 (that are situated in
the middles of two-link paths). Define a function on V (G̃):

h(v) =

{
2, v ∈ V (G),

5, v ∈ V1.

It is sufficient to verify that game 〈G̃, h〉 is losing. It is evident. Indeed, each sage from V1 has two
neighbours in G̃ with hatness 2, so he names by his strategy at most four colors. Then we give him a
hat of the color, that he does not name, and he will not guess correctly. Now all the answers of the
sages from V (G) are determined, and we give to each sage a hat of the color that he does not name,
too.

5.8. Let after deletion of the bridge graph G fall into components G1 (containing vertex B) and G2

(containing vertex A). Define hatness functions h1 and h2 on these graphs by the rule

h1(x) =

{
h(x), x ∈ V (G1) \ {B},
dh(B)

2
e, x = B.

h2(x) =

{
h(x), x ∈ V (G2) \ {A},
dh(A)

2
e, x = A.

Let G ′1 = 〈G1, h
∣∣
G1
〉, it is a losing game due to properties of function h.

If games G1 = 〈G1, h1〉 and G2 = 〈G2, h2〉 are both winning, then game G1×B

2 2

B A
×A G2 is also

winning. If the values h(A) and h(B) are even, we obtain the desired decomposition in the product of
games. But if at least one of the numbers h(A), h(B) is odd, then the hatness function of the obtained
game majorizes h and by properties of function h such game cannot be winning, a contradiction.

It remains to consider the case, when at least one of games game G1 = 〈G1, h1〉 or G2 = 〈G2, h2〉
is losing, let it be game G2. Let us apply constructor of problem 5.5 to loosing game G2: take a new
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vertex B of hatness 2 connected with A, let the hatness of vertex A become equal to

2
⌈h(A)

2

⌉
− 1 6 h(A)

and the hatnesses of other vertices be defined by function h. Denote the obtained game by G ′2. Apply
now constructor of problem 3.3 to games G ′1 and G ′2 (we assume that s = 1, g1 = g2 = ?1). We will
obtain a losing game on graph G, in which hatness function does not exceed h. It is impossible.

5.9. Denote the initial game by G1 = (G1, h1, g1), where g1 ≡ 1. Denote by G2 the subgraph of
graph G1 obtained from G1 by removing vertex A, denote by G3 the subgraph of G2 obtained from
G2 by removing vertex B, and denote by G4 the graph obtained from G3 by adding vertex C, which
is connected to all other vertices, i. e. in fact G4 is obtained from G2 by renaming vertex B to C.
Consider games G2 = (G2, h2, g2), G3 = (G3, h3, g3), G4 = (G4, h4, g4), where

h2(v) =

{
h1(v) v ∈ G3,

3 v = B
, h3(v) = h1

∣∣
G3
, h4(v) =

{
h1(v) v ∈ G3,

6 v = C
,

g2 ≡ 2 g3 ≡ 6 g4(v) =

{
1 v ∈ G3,

5 v = C
.

Suppose that game G1 is winning. When we remove by problem 3.4 all the half-edges leading from
vertices A and B, we obtain a winning game, in which the number of guesses of all other sages (i. e.
the sages from G3) become equal to 6, and the strategies do not depend of colors of A’s and B’s hats.
Assume that there exists a hats placement on G3, for which nobody from G3 guesses correctly. This

hats placement determines the strategies of sages A and B, playing on edge AB in game
1
2

1
3

A B
, and as

a result all the sages lose. That is impossible. Therefore the restriction of the game to graph G3, i.e.

game G3, is winning. Making by problem 3.6 substitution of this game with reducing in game
5
6

1
6

C v
in the place of vertex v, we obtain winning game G4.

Conversely, let game G4 be winning. We wish to replace player C by two players A (with hatness 2)
and B (with hatness 3). Let us demonstrate the winning strategy of the players in the obtained game.
All players from G3 will use the strategy of game G4, interpreting pair (color A, color B) as composite
color of player C. Show how one can “convert” the strategy of player C to a pair of strategies of A
and B.

The color of player C is an element of the set C = {0, 1} × {0, 1, 2}. Let for the current hats
placement of his neighbours C must name all the colors from set C, except (1, 2). Then the actions of
players A and B consist in that A names the color with the same parity as B’s color and B names
color 0 or 1 of opposite parity to A’s color. Player C has guessed correctly, if one of colors (0, 0), (0, 2),
(1, 1) or (0, 1), (1, 0) was on his head. By our rule in the first three cases A guesses correctly, in the
other two B guesses correctly.

The roles of A and B are assigned similarly for the other sets of five guesses of C.

5.10. Show that game
〈
G, ?HGs′(G[A]) + 1, ?s

〉
, where s′ = s(HGs(G[B]) + 1)d, is losing. For this we

construct hats placement such that the sages will lose. Since HGs′(G[A]) > s′ > HGs(G[B]) + 1, i. e.
the hatness in the game under consideration is larger than HGs(G[B]) + 1, it is sufficient to consider
the case, when the hatness of the sages from B is equal to HGs(G[B]) + 1. Applying problem 3.4,
remove all half-edges from A in B, making set B invisible for set A. Since during this action we erase
at most d half-edges for each sage from A, the number of sages’ guesses will increase, but will not
exceed s′. And the strategy of the sages from A now does not depend on the hats placement on B.
Therefore we can assume that they play a game

〈
G[A], ?HGs′(G[A]) + 1, ?s′

〉
on graph G[A]. By the

definition of s-hat number this game is losing. Thus, there exists a hats placement on A, such that
nobody from A guesses correctly. Give to the sages from A this placement, then the strategy of the
sages from B of game on G[B] is determined. Since the hatnesses of the sages from B are greater than
HGs(G[B]), we can assign colors on B so that the sages will lose.


