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1 Opening problems

For a start, you can try to solve several problems. They are rather complicated, so if
you wouldn't succeed, return to this section after studying pqr-lemmas.

1. Let a, b, c be non-negative real numbers such that a+ b+ c = 1. Prove that

1 + 12abc > 4(ab+ bc+ ca).

2. Let a, b, c be real numbers such that

a+ b+ c = 9, ab+ bc+ ca = 24.

Prove that 16 6 abc 6 20. Prove moreover that for any r ∈ [16, 20] there exist real
numbers a, b, c such that a+ b+ c = 9, ab+ bc+ ca = 24, abc = r.

3. Let P be a symmetric polynomial of degree not greater than 5. Prove that if
P (a, a, c) > 0 and P (0, b, c) > 0 for all non-negative real numbers a, b, c, then P (a, b, c) >
0 for all non-negative real numbers a, b, c.

4. (Russia TST, 2015) Let a, b, c be non-negative real numbers such that 1+a+b+c =
2abc. Prove that

ab

1 + a+ b
+

bc

1 + b+ c
+

ca

1 + c+ a
>

3

2
.

5. (Iran TST, 1996) Let a, b, c be non-negative real numbers such that ab+ bc+ ca 6= 0.
Prove that

(ab+ bc+ ca)

(
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2

)
>

9

4
.

2 Symmetric polynomials

We start out discussion of pqr-method by considering symmetric polynomials. Main
results of this section will be used in the next sections.

1At the moment the name uvw-method is commonly used.
2The authors are grateful to Michael Rozenberg for useful remarks. We would like to draw your

attention to the important role he played in popularization of the uvw-method.
3The authors are grateful to Anna Doledenok and Ilya Bogdanov for help with the translation.
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2.1 Properties of symmetric polynomials

6. Express a2 + b2, a3 + b3, a4 + b4, (a− b)2 in terms of a+ b and ab.

For three variables a, b, c denote p = a + b + c, q = ab + bc + ca, r = abc (elementary
symmetric polynomials in 3 variables).

7. Express polynomials a2 + b2 + c2, a2b + a2c + b2a + b2c + c2a + c2b, a3 + b3 + c3,
(ab)2 + (bc)2 + (ca)2, a4 + b4 + c4, (a+ b)(b+ c)(c+ a) in terms of p, q, r.

8. By de�nition, put sk = ak + bk + ck for any non-negative integer number k. Express
sk (k > 3) in terms of p, q, r, sk−1, sk−2 and sk−3.

The polynomial G(a, b, c) in 3 variables is called symmetric if its value does not change
after swapping any two variables (i.e. G(a, b, c) = G(b, a, c) = . . .).

You may use result of the next problem in the sequel without proof.

9. Prove that any symmetric polynomial in a, b, c can be expressed as a polynomial in
p, q, r.

10. Let t be a real number. Solve a system of equations:

 a + b + c = t,
a2 + b2 + c2 = t2,
a3 + b3 + c3 = t3.

Often it is useful to rewrite an inequality to be proved in terms of symmetric polynomials.
However, some troubles are to be resolved. For instance, a trivial inequality a2+b2+c2 >
0, where a, b, c are real numbers, turns into p2 − 2q ≥ 0. This resulting inequality holds
not for all pairs of real p and q. Thus, it turns out that the triples of p, q, and r are not
arbitrary. Our next goal is to work out the conditions p, q, and r must satisfy.

11. Let a, b, c be real numbers. Prove that q2 > 3pr.

12. Let a, b, c be non-negative real numbers. Prove that
p

3
>

√
q

3
> 3
√
r.

2.2 Symmetric polynomials in 2 variables

A complex number is an ordered pair of real numbers (x, y). It is useful to write the
pair (x, y) as x + iy, where i is the imaginary unit. De�ne the sum and the product of
complex numbers as:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

It is easy to see that i2 = −1. For the complex number x is called real part and y is
called imaginary part. A complex number is called pure imaginary if x = 0. The complex

conjugate of a complex number x + yi is the number x − yi (it is denoted as x+ yi).
Notice that every real number x is complex: x = x+ 0 · i.
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For two complex numbers a, b denote p = a+ b and q = ab.

13. Prove that a and b are roots of equation x2 − px + q = 0 and there are no other
roots.

14. Prove that if p and q are real, then either a and b are both real or b is the complex
conjugate of a.

15. Prove that if p and q are real, then (a− b) is either real or pure imaginary.

16. Which conditions (particularly, inequalities) should satisfy p and q for a and b to
be real?

17. Prove that a and b are real and non-negative if and only if p and q are non-negative
real numbers which satisfy conditions from the previous problem.

2.3 Symmetric polynomials in 3 variables

For three (perhaps complex) numbers a, b, c denote p = a+b+c, q = ab+bc+ca, r = abc.

18. Prove that a, b, c are roots of equation x3−px2+ qx− r = 0 and there are no other
roots.

19. Prove that for real numbers p′, q′, r′ there exist complex numbers a′, b′, c′ (unique
up to a permutation) such that p′ = a′ + b′ + c′, q′ = a′b′ + b′c′ + c′a′, r′ = a′b′c′. Prove
moreover that either numbers a′, b′, c′ are real or a′ is real and b′ is a complex conjugate
of c′ (up to a permutation).

20. Assume that p, q, and r are real numbers. Prove that if a, b, c are real, then
(a− b)(b− c)(c− a) is real, otherwise it is pure imaginary.

21. Prove that

(a− b)2(b− c)2(c− a)2 = −4p3r + p2q2 + 18pqr − 4q3 − 27r2.

Hint. Denote lxy = axby + bxcy + cxay. Then (l12 − l21)2 = (l12 + l21)
2 − 4l12l21.

22. Criterion for reality. Let (p, q, r) be a triple of real numbers. Prove that the
numbers a, b, c (which are de�ned as the roots of x3 − px2 + qx − r = 0 counting
multiplicities) are real if and only if T (p, q, r) > 0, where T (p, q, r) is a polynomial in 3
variables de�ned as T (p, q, r) = −4p3r + p2q2 + 18pqr − 4q3 − 27r2.

23. Non-negativity lemma. Prove that p, q, r > 0 and T (p, q, r) > 0 if and only if
a, b, c are non-negative real numbers.

The formula for T (p, q, r) may look too complicated for being useful. In what follows,
we shall mainly use the following idea. Let us regard the expression T (p, q, r) as a
polynomial in one variable (e.g., r), the other two are assumed to be �xed (e.g., p = p0
and q = q0). Then the condition T (p, q, r) ≥ 0 de�nes some union of segments and closed
rays.
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3 pqr-lemmas

A triple (p, q, r) is called acceptable if p, q, r > 0 and T (p, q, r) > 0, i.e., if the non-
negàtivity lemma applies. In other words, polynomial x3 − px2 + qx − r = 0 has three
(perhaps multiple) real non-negative roots.

24. r-lemma. Fix some values p = p0 and q = q0 such that there exists at least one
value of r for which the triple (p0, q0, r) is acceptable. Prove that such triple with the
minimal value of r corresponds to a triple (a, b, c) in which either two numbers are equal,
or abc = 0. Prove moreover that such triple with the maximal value of r corresponds to
a triple (a, b, c) containing two equal numbers.

25. q-lemma. Fix some values p = p0 and r = r0 such that there exists at least
one value of q for which the triple (p0, q, r0) is acceptable. Prove that such triples with
minimal and maximal values of q correspond to a triple (a, b, c) containing two equal
numbers.

26. p-lemma. Fix some values q = q0 and r = r0 > 0 such that there exists at least
one value of p for which the triple (p, q0, r0) is acceptable. Prove that such triples with
minimal and maximal values of p correspond to a triple (a, b, c) containing two equal
numbers.
Does the same statement holds true when r0 = 0?

Let us illustrate the use of the pqr-method by the following simple problem.

Example. Let a, b, c be non-negative real numbers. Prove that

a2 + b2 + c2 > ab+ bc+ ca.

Proof. The inequality can be rewritten as p2 − 2q > q ⇔ p2 > 3q. Fix p = p0 and

r = r0. We need to prove that q 6 p20
3 . In other words, we shall show that q is bounded

from above by some constant. Notice that if the last inequality holds for greatest q, then
it holds for all q. So it su�ces to check the inequality for the largest value of q. It follows
from the q-lemma that q attains the maximal value when two of a, b, c are equal. Assume

without loss of generality that a = b = x, c = z. The inequality q 6 p20
3 is equivalent to

the desired one. Now, plugging a = b = x, c = z into a2 + b2 + c2 > ab + bc + ca we
obtain

2x2 + z2 > x2 + 2xz ⇔ (x− z)2 > 0.

This argument shows that a2 + b2 + c2 > ab+ bc+ ca holds for all non-negative a, b, c.
Equality holds if and only if x = z, i.e. a = b = c.

You can now return to the �rst section and use pqr-method in order to solve the problems
1-5.
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4 Inequalities

Suppose we want to check whether a symmetric inequality in 3 non-negative variables

a, b, c holds. Fixing two of the three variables p, q, and r, we can rewrite the inequality

as f > 0, where f is a function of the remaining variable. If f is either monotonic or

concave, then we need to check the inequality only in the case when a = b, and also when

a = 0 if the non-�xed variable is p or q.

For all inequalities you must �nd values of the numbers a, b, c such that an
inequality turns out to be equality!

27. Let a, b, c be non-negative real numbers such that 1
a + 1

b +
1
c = 1. Prove that

(a− 1)(b− 1)(c− 1) > 8.

28. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. Prove that

1

9− ab
+

1

9− bc
+

1

9− ca
6

3

8
.

29. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. Prove that

1

1 + 2ab
+

1

1 + 2bc
+

1

1 + 2ca
>

2

1 + abc
.

30. Let a, b, c be non-negative real numbers such that a+b+c = 4 and a2+b2+c2 = 6.
Prove that

a6 + b6 + c6 6 a5 + b5 + c5 + 32.

31. Let a, b, c be non-negative real numbers such that ab+ bc+ ca 6= 0. Prove that

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
>

10

(a+ b+ c)2
.

32. Let a, b, c be non-negative real numbers. Prove that

a5 + b5 + c5 + abc(ab+ bc+ ca) > a2b2(a+ b) + b2c2(b+ c) + c2a2(c+ a).

33. a) Let a, b, c be non-negative real numbers. Prove that

a4 + b4 + c4

ab+ bc+ ca
+

3abc

a+ b+ c
>

2

3
(a2 + b2 + c2).

b) Find the least non-negative real k such that the inequality

k
a4 + b4 + c4

ab+ bc+ ca
+ (1− k) 3abc

a+ b+ c
>
a2 + b2 + c2

3
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holds for all non-negative numbers a, b, c.

34. For positive real numbers a, b, c de�ne X = a2+b2

2c2 + b2+c2

2a2 + c2+a2

2b2 , Y = 2a
b+c +

2b
c+a + 2c

a+b . Prove that
4X + 69 > 27Y.

35. a) Let P (a, b, c) be a homogeneous symmetric polynomial of degree not greater than
8. Find an algorithm checking whether P is non-negative when a, b, c are non-negative.
We assume that we are ale to �nd extrema and zeroes of an arbitrary function in one
variable.

b) Find an analogous algorithm for a homogeneous symmetric polynomial of degree
not greater than 17.

c*) Find an analogous algorithm for any homogeneous symmetric polynomial.

In order to simplify the application of pqr-method, it is often useful to make a change
of variables.

36. Let a, b, c be non-negative real numbers such that
√
a+
√
b+
√
c = 3. Prove that

2(a+ b+ c− 2)2 + (ab+ bc+ ca)(2 + 3(a+ b+ c)) > 35.

37. Let a, b, c be real numbers such that a, b, c > 1 and a+ b+ c = 9. Prove that
√
ab+ bc+ ca 6

√
a+
√
b+
√
c.

38. Let a, b, c be positive real numbers. Prove that(
a

b+ c

)3

+

(
b

c+ a

)3

+

(
c

a+ b

)3

+
13abc

(a+ b)(b+ c)(c+ a)
> 2.

39. Let a, b, c be positive real numbers such that a2 + b2 + c2 + abc = 4. Prove that

a2

4− bc
+

b2

4− ca
+

c2

4− ab
6 1.

40. Let a, b, c be real numbers. Prove that

(a2 + b2 + c2)2 > 3(a3b+ b3c+ c3a).

Equality holds if either a = b = c or

a

sin2 4π
7

=
b

sin2 2π
7

=
c

sin2 π7
,

b

sin2 4π
7

=
c

sin2 2π
7

=
a

sin2 π7
,

c

sin2 4π
7

=
a

sin2 2π
7

=
b

sin2 π7
.

Hint. Perform the substitution a = x+ 2ty, b = y + 2tz, c = z + 2tx for t ∈ R.
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5 Unusual conditions

Up to this point we have considered rather simple conditions on a, b, c, e.g. a, b, c > 0
or a+ b+ c = 3. These conditions can be easily written in terms of p, q, r. Is it possible
to formulate unusual conditions in terms of p, q, r?

41. Find conditions on numbers p, q, r necessary and su�cient for
a) numbers a, b, c to be not less than 1;
b) numbers a, b, c to be side lengths of a triangle (perhaps degenerate);
c) non-negative real numbers a, b, c to satisfy 2min(a, b, c) > max(a, b, c).

42. Let a, b, c be real numbers such that a, b, c ∈
[
1
3 , 3
]
. Prove that

a

a+ b
+

b

b+ c
+

c

c+ a
>

7

5
.

43. Let a, b, c be side lengths of a triangle. Prove that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
> 6

(
a

b+ c
+

b

a+ c
+

c

b+ a

)
.

44. Prove that there exists a polynomial S(x, y, z) such that the following conditions
are equivalent: (i) a, b, c are real numbers; (ii) S(x, y, z) > 0, where x = a + b + c,
y = a2 + b2 + c2, z = a3 + b3 + c3.

45. Prove that the following conditions are equivalent: (i) s ∈
[
86
9 , 10

]
; (ii) there exist

real numbers a, b, c such that a+ b+ c = 4, a2 + b2 + c2 = 6, a3 + b3 + c3 = s.

46. (USA TST, 2001) Let a, b, c be non-negative real numbers such that a2 + b2 + c2 +
abc = 4. Prove that

ab+ bc+ ca− abc 6 2.

47. (China-West, 2004) Let a, b, c be positive real numbers. Prove that

1 <
a√

a2 + b2
+

b√
b2 + c2

+
c√

c2 + a2
6

3

2

√
2.

48. Let a, b, c be non-negative real numbers such that a2 + b2 + c2 + nabc = n+ 3 for
some real n.

a) Assume that 0 6 n 6 3
2 . Prove that a+ b+ c 6 3.

b) Assume that 3
2 6 n 6 2. Prove that a+ b+ c 6

√
2(n+ 3).

c) Assume that n = 2. Prove that ab+ bc+ ac− abc 6 5
2 .

49. Let a, b, c be non-negative numbers such that a2 + b2 + c2 + abc = 4. Prove that

a2b2 + b2c2 + c2a2 > abc(2 +
√
4− 3abc).
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6 Special cases

In this section we consider complicated symmetric conditions containing all three elementary
symmetric polynomials. If a symmetric inequality (on non-negative numbers) obey conditions
of this type, then the pqr-method can not be applied. Indeed, if we �x two numbers of
the triple p, q, r, then the third one will almost certainly be uniquely de�ned. What is
to be done?

Fix one number of the numbers p, q, r (to be precise, r). Then our condition will
describe the relationship between the remaining two numbers. If we express one of them
by the other, then our condition states that the �rst elementary symmetric polynomial
(to be precise, p) is a function of the second one (to be precise, q). Thus, the triple
(p, q, r) is uniquely determined by q. This means that our inequality can be naturally
written as h(q) > 0, where h is a function of real non-negative variable. If h is monotonic
or concave, then it su�ces to prove our inequality only for extremal q. So, the problem
is reduced to the problem of �nding extremal q (when condition and r are �xed).

Let us spend some time setting the scene.

Let Rn denote a set of ordered groups of n real numbers. For small n the set Rn has a
natural geometric interpretation. Namely, R1 is a line, R2 is a plane. Hence we say that
the elements of Rn are points.

The distance between two points x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn is de�ned
by ||x− y|| =

√
(x1 − y1)2 + . . .+ (xn − yn)2. In particular, for n = 1 distance is equal

to the modular of the di�erence between corresponding numbers, for n = 2 distance is
the well-known distance between points.

Let M be a subset of Rn. The function f :M → R is continuous in the point x ∈M if
for any ε > 0 there exists δ = δ(x, ε) such that if for y ∈ Rn holds ||x − y|| < δ, then
|f(x)− f(y)| < ε.

Example. Let us prove that the function f(x) = x2 is continuous for any x ∈ R.
Note that

|x2 − y2| = |x− y| · |(y − x) + 2x| 6 |x− y| · (|x− y|+ |2x|) < δ2 + 2|x|δ.

Suppose δ = min(
√

ε
2 ,

ε
4|x| ). Since both items are not greater than ε

2 , it follows that

|x2 − y2| < ε.

You may use results of the next three problems in the sequel without proof.

50. Prove that the function f(x) = 1
x is continuous for any x ∈ (0,+∞), the function

f(x) =
√
x is continuous for any x ∈ (0,+∞), the function f(x, y) = x+ y is continuous

for any (x, y) ∈ R2.

51. Let the function g(x) be continuous for any x ∈M ⊂ Rn, let range of g(x) belongs
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to N ⊂ R. Let the real-valued function f(y) be continuous for any y ∈ N . Prove that
the function f(g(x)) is continuous for any x ∈M .

52. a) Prove that the polynomial P (x) in one variable is continuous for any x ∈ R.
b) Prove that the polynomial P (x1, . . . , xn) in n variables is continuous for any

(x1, . . . , xn) ∈ Rn.

We say that the real numbers a, b, c obey the symmetric relation G, if the equality
g(p, q, r) = 0 holds, where g is a continuous function in 3 variables.

53. Let the variables a, b, c obey the symmetric condition G. Fix some value r > 0 such
that there exist p, q > 0 for which the triple (p, q, r) is acceptable and G(p, q, r) = 0.
Assume that the condition G is equivalent to p = f(q) (while r is �xed), where f is a
function de�ned below, and a set of admissible q is bounded. Prove that q attains its
maximal and minimal value. Moreover, in both cases two variables of a, b, c are equal
when

a) f is a linear function;

b) f is a polynomial.

54. Let the variables a, b, c obey the symmetric condition G. Let (x, y, z) be an arbitrary
permutation of (p, q, r). Fix some value z > 0 such that there exist x, y > 0 for which the
triple (p, q, r) is acceptable and G(p, q, r) = 0. Assume that the condition G is equivalent
to x = f(y) (while z is �xed), where f is a polynomial, and a set of admissible y is
bounded. Prove that y attains its maximal and minimal values. Moreover, if z = r,
then the equality (a − b)(b − c)(c − a) = 0 holds for any extreme point, otherwise
abc(a− b)(b− c)(c− a) = 0 holds for any extreme point.

Remark. Let I be a union of segment containing admissible y. Statement of the previous
problem is also true when f is continuous function for any point of I. If you solve the
previous problem, you may use this fact in the sequel without proof.

Example. Let a, b, c be non-negative numbers such that a2 + b2 + c2 + abc = 4.
Prove that

a+ b+ c > 2 +
√
abc(4− a− b− c).

Proof. The desired inequality can be written as

p > 2 +
√
r(4− p), (∗)

while the relation a2 + b2 + c2 + abc = 4 can be written as p2−4+r
2 = q. If variable r is

�xed, we can write the desired inequality as f(p) > 0, where f(x) = x− 2−
√
r(4− x)

is a monotonic function. Therefore, it su�ces to check (∗) for the smallest value of p.
From the problem 54 it follows that it su�ces to check the desired inequality for a = b.
If a = b, then c = 2− a2. The desired inequality can be written as

a4(a− 1)2 > 0.
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Equality holds if a = b = c = 1; a = b = 0, c = 2; a = c = 0, b = 2; b = c = 0, a = 2.

55. Let a, b, c be non-negative real numbers such that (a + b + c)( 1a + 1
b +

1
c ) = 10.

Prove that
9

8
6
a2 + b2 + c2

ab+ bc+ ca
6

6

5
.

56. Let a, b, c be positive real numbers such that a+ b+ c = 1
a + 1

b +
1
c . Prove that

(a+ b+ c)(1 + abc) > 6.

57. Let a, b, c be non-negative real numbers such that ab+ bc+ ca = a3+ b3+ c3. Prove
that

ab+ bc+ ca > a2b2 + b2c2 + c2a2.

58. Let a, b, c be non-negative real numbers, p, q, r are de�ned naturally. Prove that if
q + r = 4, then

p3 − 27r > 7(p2 − 3q).

59. Let a, b, c be positive real numbers such that a2+b2+c2 = ab+bc+ca+(abc−1)2.
Prove that

ab+ bc+ ca+ 3 > 2(a+ b+ c).

7 n variables

Up to this point we considered symmetric inequalities in 3 variables. What can we say
if there are more than 3 variables?

The ball (the sphere) in Rn of radius r and center x is a set of points y such that
||x− y|| 6 r (||x− y|| = r, respectively). In particular, if n = 2, then ball is a cirñle and
sphere is a circumference.

Consider a sequence z1, z2, . . . in Rn. We say that this sequence converges to the point
z, if for any ε > 0 the exterior of the ball of radius ε and center z contains only �nitely
many elements of this sequence.

Example. Since there are only �nitely many elements of the sequence zn = 1
n , where

n ∈ N, in the exterior of the segment [−ε, ε], it follows that zn converges to z = 0.

Consider a set of points M in Rn. The point z is called a limit point of M if there
exists a sequence of points z1, z2, . . ., where zi ∈M and zi 6= z, converging to z. We say
that the set M in Rn is closed, if it contains all its limit points.

Example. Since 0 is a limit point of the interval (0, 1) but does not belong to it,
this interval is not a closed set. Conversely, the segment [0, 1] is a closed set.
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We say that the set M in Rn is bounded, if there exists constant C such that for any
x = (x1, x2, . . . , xn) ∈ M and for any i, 1 6 i 6 n, |xi| < C. The set M in Rn is called
a compact set if M is closed and bounded.

60. Is the segment [0, 1] a compact set? The ray [0,+∞)? The point (1, 1, . . . , 1)? The
ball of radius 1 and center (1, 1, . . . , 1)? The same ball without the point (1, 1, . . . , 1, 0)?
The sphere of radius 1 and center (1, 1, . . . , 1)?

You may use result of the next problem in the sequel without proof.

61. Consider a number of relations

P1(x1, . . . , xn) = 0, . . . , Ps(x1, . . . , xn) = 0, Ps+1(x1, . . . , xn) > 0, . . . , Pm(x1, . . . , xn) > 0,

where m ∈ N, s ∈ N0, P1, . . . , Pm are polynomials in n variables. Let M be a set of
points obeying this relations. Prove that if M is bounded, then M is a compact set.

We need the following classical theorem of calculus. You can use it without proof.

TheWeierstrass theorem. Continuous function on a compact set attains its maximum
and minimum.

Example. The function x2 on the segment [0, 1] attains its maximum and minimum.
However the Weierstrass theorem doesn't imply an analogous statement for x2 on the
half-interval (0, 1].

62. Let f(x1, x2, . . . , xn) be a symmetric continuous function on the compact set M ⊂
Rn. Let f be such that if a4, . . . , an are �xed (and there exist a1, a2, a3 such that
(a1, . . . an) ∈M), then the function

h(x1, x2, x3) = f(x1, x2, x3, a4, . . . , an)

attains the maximal and minimal values only when (x1 − x2)(x2 − x3)(x3 − x1) = 0 (or
x1x2x3(x1−x2)(x2−x3)(x3−x1) = 0). Prove that the function f attains its maximum
and minimum. Moreover, in both cases there are less than 3 di�erent numbers among
x1, . . . , xn (or there are less than 3 di�erent non-zero numbers among x1, . . . , xn).

Example. Let a, b, c, d be non-negative real numbers such that a + b + c + d = 4.
Prove that

3(a2 + b2 + c2 + d2) + 4abcd > 16.

Proof. From the problem 61 it follows that the given relations de�ne a compact set. By
de�nition, put

f(a, b, c, d) = 3(a2 + b2 + c2 + d2) + 4abcd.

From the problem 52 we can say that f is a continuous function. Fix d = d0 > 0. By
de�nition, put p = a+ b+ c, q = ab+ bc+ ac, r = abc. Consider the function

h(a, b, c) = f(a, b, c, d0) = 3(a2 + b2 + c2 + d20) + 4abcd0 = 3p2 − 6q + 4d0r + 3d20 =
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= 3p2 − 6q + 4d0r + 3d20.

Fix p and r. Since h linear in q, it follows that h attains its minimum only when (a −
b)(b− c)(c− a) = 0. From the problem 62 it follows that it su�ces to prove the desired
inequality when there are less than 3 di�erent numbers among a, b, c, d.

• Considering a = b and c = d = 2− a, we obtain

4(a− 1)2((a− 1)2 + 1) > 0.

Equality holds if a = b = c = d = 1.

• Considering a = b = c and d = 4− 3a, we obtain

4(a− 1)2(4− 3a)(a+ 2) > 0.

Since a 6 4
3 , if follows that inequality holds true. Equality holds if a = b = c =

4
3 , d = 0; a = b = d = 4

3 , c = 0; a = c = d = 4
3 , b = 0; b = c = d = 4

3 , a = 0.

63. Let a, b, c, d be non-negative real numbers such that a+ b+ c+ d = 1. Prove that

(1− a2)2 + (1− b2)2 + (1− c2)2 + (1− d2)2 > 3.

64. (Russia TST, 2015) Let a, b, c, d be non-negative real numbers such that a2+ b2+
c2 + d2 = 1. Prove that

a3 + b3 + c3 + d3 + abc+ bcd+ cda+ dab 6 1.

65. (IMO Shortlist, 2010) Let a, b, c, d be real numbers such that a+ b+ c+ d = 6 and
a2 + b2 + c2 + d2 = 12. Prove that

a) abcd 6 3;
b) 36 6 4(a3 + b3 + c3 + d3)− (a4 + b4 + c4 + d4) 6 48.

66. Let a, b, c, d be non-negative real numbers. Prove that

a3 + b3 + c3 + d3 + 4
4
√
a3b3c3d3 > 2(abc+ bcd+ cda+ dab).

67. (Russia, 2016) Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 3.
a) Prove that

1

a2
+

1

b2
+

1

c2
+

1

d2
6

1

a2b2c2d2
.

b) Prove that
1

a3
+

1

b3
+

1

c3
+

1

d3
6

1

a3b3c3d3
.

c) Let x be real number not less than 2. Prove that

1

ax
+

1

bx
+

1

cx
+

1

dx
+

∣∣∣∣ (1− 1
a )(1−

1
b )(1−

1
c )(1−

1
d ))

2

∣∣∣∣x 6
1

axbxcxdx
.
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68. Let a, b, c, d be non-negative numbers such that a+ b+ c+ d = 4. Prove that

1

a2
+

1

b2
+

1

c2
+

1

d2
+ 4 > 2(a2 + b2 + c2 + d2).

69. Let a, b, c, d, e be real numbers such that a+b+c+d+e = 20, a2+b2+c2+d2+e2 =
100. Find extrema of

abcd+ abce+ abde+ acde+ bcde.

70. Let a, b, c, d be positive real numbers such that a + b + c + d = 1
a + 1

b +
1
c +

1
d .

Prove that
(a+ b+ c+ d)(17 + 46abcd) > 252.

8 Additional problems

In the problems below you can apply pqr-method in the non-obvious way.

71. (APMO, 2004) Let a, b, c be real numbers. Prove that

(a2 + 2)(b2 + 2)(c2 + 2) > 9(ab+ bc+ ca).

72. (Iran, 2005) Let a, b, c be real non-negative numbers such that 1
a2+1+

1
b2+1+

1
c2+1 =

2. Prove that

ab+ bc+ ca 6
3

2
.

73. Let a, b, c be side lengths of an acute triangle and R be a circumradius of this
triangle. Prove that

ab

c
+
bc

a
+
ca

b
> 5R.

74. (Shortlist IMO, 2011) Let a, b, c be side lengths of a triangle such that a2+b2+c2 = 3.
Prove that

a

(b+ c− a)2
+

b

(a+ c− b)2
+

c

(a+ b− c)2
>

3

(abc)2
.

75. The polynomial G(a, b, c) in 3 variables is called cyclic if G(a, b, c) = G(b, c, a)=
G(c, a, b). Prove that any cyclic polynomial in a, b, c can be written as X(a, b, c) +
Y (a, b, c)(l12 − l21) (X and Y are symmetric polynomials).

76. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 5
2 (ab+ bc+ ca). Prove

that

(a2 + b2 + c2)2 >
25

8
(a3b+ b3c+ c3a).
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77. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. Prove that

(a2b+ b2c+ c2a)(ab+ bc+ ca) 6 9.

78. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

a2 + 3b2

a+ 3b
+
b2 + 3c2

b+ 3c
+
c2 + 3a2

c+ 3a
> 3.

79. Let a, b, c be non-negative real numbers. Prove that

10(a+ b+ c)5 > 81(a2 + b2 + c2)(a2b+ b2c+ c2a+ 7abc).

80. (Korea, 2012) Let a, b, c be non-negative real numbers such that a2 + b2 + c2 =
2abc+ 1. Find the maximum of

(a− 2bc)(b− 2ca)(c− 2ab).

81. Let a, b, c be real numbers such that a, b, c ∈ [0, 1] and (1− a)(1− b)(1− c) = abc.
Prove that

a2 + b2 + c2 +
a+ b+ c

2
>

3

2
.

82. Let a, b, c be non-negative real numbers such that a2 + b2 + c2 + abc = 4 and
a+ b+ c >

√
8. Prove that

a+ b+ c > 2 +
3
√
abc.

83. Let a, b, c be non-negative real numbers such that a2 + b2 + c2 − (ab+ bc+ ca) =
11(a+ b+ c− 3). Prove that

√
a+ 2 +

√
b+ 2 +

√
c+ 2 >

√
a+ b+ c+ 24.

84. Let a, b, c be positive real variables such that abc = 1. Prove that
a)

a10 + b10 + c10 > 3 + 45
(
(a− 1)2 + (b− 1)2 + (c− 1)2

)
;

b*)
a10 + b10 + c10 > 3 + 46

(
(a− 1)2 + (b− 1)2 + (c− 1)2

)
;

c) there exists k > 0 such that for any natural number n > 3

an + bn + cn > 3 + kn((a− 1)2 + (b− 1)2 + (c− 1)2);

d*) there exists k > 0 such that for any natural number n > 3

an + bn + cn > 3 + kn2((a− 1)2 + (b− 1)2 + (c− 1)2),
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but there is no ε > 0 such that there exists k′ > 0 such that for any natural number
n > 3

an + bn + cn > 3 + k′n2+ε((a− 1)2 + (b− 1)2 + (c− 1)2).

85. Let a, b, c be non-negative real numbers such that (a + 1)(b + 1)(c + 1) = 84,
(a+ b+ c)(ab+ bc+ ac) = 14256

abc . Find the maximum of

(a+ b+ c)2 + (ab+ bc+ ac)2 + a2b2c2.

86. Let a, b, c, d be non-negative real numbers such that a+b+c+d = 3, a2+b2+c2+d2 =
5, a4 + b4 + c4 + d4 = 17. Find the maximum of d.
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