
SOLVING EQUATIONS USING ONE RADICAL

presented by D. Akhtyamov1, I. Bogdanov2, A. Glebov3,

A. Skopenkov4, E. Streltsova5, and A. Zykin6

This project is devoted to several classical results and methods in pure mathematics which
are also interesting from the point of view of computer science (related to symbolic computa-
tions). The main problems of the project are 3.3.d, 4.2, 5.5.c, 6.7, and 6.17.bc. The principal
difference of this set of problems from standard textbooks in this topic is that we do not use
the notion of the Galois group (and even the notion of group). Despite of the lack of these
words, the ideas of the proofs presented below are starting points for the Galois theory [S09]
and the constructive Galois theory [E].

We suggest to all the students working on the project to consult with the jury on any
questions on the project, or on ideas of the solutions. Their results may be used as sources of
talks on the students’ conferences, e.g., [M].

The students who work on the project well enough will get several extra problems.
A student (or a group of students) working on this project get a “star” for every solution

which has been written down and marked with either ‘+’ or ‘+.’. The jury may also award
extra stars for beautiful solutions, solutions of hard problems, or (some) solutions typeset in
TEX. The jury has infinitely many stars. One may submit a solution in oral form, but he loses
a star with each attempt.

We will tell the solutions of 1.1.ab, 1.2.ab, 1.4.ab, 1.5.a, 2.1.a′′f, 2.3.abcd, 3.1.a, 3.2.a, 4.1.a,
5.1.a, 5.2.a, and 5.4.ab at the initial presentation; thus you may submit the solutions of these
problems only before this presentation (but you may make this in oral form without loss of
stars).

If a problem looks just like a statement, a proof of this statement is required in this problem.
If you are stuck on a certain problem, we suggest to try looking at the next ones. They may
turn out to be helpful.

We denote the set of rational numbers by Q. A ‘polynomial with rational coefficients’ is
referred to merely as polynomial. A polynomial is irreducible over a set F , if it cannot be
decomposed as a product of polynomials of lower degrees with coefficients in F .

Problems before the Semifinal

1 Solving equations of degree 3 and 4

1.1. (a) Solving an equation ax3 + bx2 + cx + d = 0 can be reduced by substitution of
variable to solving an equation of the form x3 + px+ q = 0.

(b) Solving an equation ax4 + bx3 + cx2 + dx + e = 0 can be reduced by a substitution of
variable to solving an equation of the form x4 + px2 + qx+ r = 0.

In the next two problems, we allow to use without proof the Intermediate value theorem for
polynomials: If a polynomial P satisfies P (a) > 0 and P (b) < 0 for some a < b, then there
exists a real number c ∈ [a, b] such that P (c) = 0.

1.2. Find the number of real roots of the equation
(a) x3 + 2x+ 7 = 0; (b) x3 − 4x− 1 = 0.
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1.3. (a) Which relations on p and q are equivalent to the condition that the equation
x3 + px+ q = 0 has exactly two roots?

(b) Under these relations, express the roots in terms of p and q.
(c) Find the number of real roots of x3 + px+ q = 0 in terms of the values of p and q.

Hereafter, ‘to solve an equation’ always means ‘to find all its real roots’. However, we
recommend also to find all the complex roots as well.

1.4. (a) Prove that
3
√

2 +
√

5− 3
√√

5− 2 = 1.
(b) Find at least one root of the equation x3 − 3 3

√
2x+ 3 = 0.

Hint: del Ferro’s method. Since (b+ c)3 = b3 + c3 + 3bc(b+ c), the number x = b+ c satisfies
the equation x3 − 3bcx− (b3 + c3) = 0.

(c) Solve the equation x3 − 3 3
√

2x+ 3 = 0.
(d)* Solve the equation x3 − 3x− 1 = 0.

1.5. (a) Factor the expression a3 + b3 + c3 − 3abc.
(b) Decompose a3 + b3 + c3− 3abc into a product of linear factors with complex coefficients.

1.6. (a) Formulate and prove a theorem describing all real roots of the equation x3+px+q =
0 in a case when del Ferro’s method (see problem 1.4) allows to obtain all of them. Under which
relations on p and q this method it applicable, if we allow taking square roots only of positive
numbers?

(b) The same question for finding all complex roots.

1.7. Solve the equation (a) (x2 + 2)2 = 18(x− 1)2;
(b) x4 + 4x− 1 = 0; (c) x4 + 2x2 − 8x− 4 = 0; (d) x4 − 12x2 − 24x− 14 = 0.

Hint to 1.7.b: Ferrari’s method. Find numbers α, b, c such that

x4 + 4x− 1 = (x2 + α)2 − (bx+ c)2.

For this purpose, one may search for a value of α such that the trinomial (x2+α)2−(x4+4x−1)
is a square of a linear function. To that end, find the discriminant of this trinomial. (This
discriminant is a cubic polynomial in α; it is called the cubic resolution of the polynomial
x4 + 4x− 1 = 0.)

2 Representability with use of only one radical

2.1. Determine whether the following number can be represented in the form a +
√
b with

a, b ∈ Q:

(a)
√

3 + 2
√

2; (a′)
√

2 +
√

2; (a′′)
1

7 + 5
√

2
; (b)

3
√√

5 + 2− 3
√√

5− 2;

(c)
3
√

7 + 5
√

2; (d) cos(2π/5); (e) 3
√

2; (f)
√

2+ 3
√

2; (g) cos(2π/9); (h)* cos(2π/7).

2.2. The number cos(2π/9) is a root of the polynomial 8x3 − 6x+ 1.

2.3. Assume that r ∈ R \Q is chosen so that r2 ∈ Q.
(a) Irreducibility Lemma. The polynomial x2 − r2 is irreducible over Q.
(b) Linear Independence Lemma. If a+ br = 0 with a, b ∈ Q, then a = b = 0.
(c) If r is a root of some polynomial, then this polynomial is divisible by x2 − r2.
(d) Conjugation Theorem. If r is a root of a polynomial, then −r is also its root.
(e) Corollary. If a polynomial has a root a+ br with a, b ∈ Q, then a− br is also a root of

this polynomial.
(f) Corollary. If a cubic polynomial has a root of the form a + br with a, b ∈ Q, then this

polynomial has a rational root.

2.4. Proposition. If a polynomial of degree at least 3 is irreducible over Q, then none of
its roots has the form a±

√
b with a, b ∈ Q.
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2.5. Determine whether the following number can be represented in the form a+b 3
√

2+c 3
√

4
with a, b, c ∈ Q:

(a)
√

3; (a′)
1

1 + 5 3
√

2 + 3
√

4
; (b) cos(2π/9); (c) 5

√
3; (d) 3

√
3;

(e) the least positive root of x3 − 4x+ 2 = 0;
(f)* the unique real root of x3 − 6x− 6 = 0;
(g)* the unique real root of x3 − 9x− 12 = 0.

Hereafter, we use the notation

εq = cos
2π

q
+ i sin

2π

q
.

2.6. Assume that r ∈ R \Q is chosen so that r3 ∈ Q.
(a) Irreducibility Lemma. The polynomial x3 − r3 is irreducible over Q.
(b) Linear Independence Lemma. If a+ br + cr2 = 0 with a, b, c ∈ Q, then a = b = c = 0.
(c) If r is a root of a polynomial, then this polynomial is divisible by x3 − r3.
(d) Conjugation Theorem. If r is a root of a polynomial, then the numbers ε3r and ε23r

are also its roots.
(e) Corollary. If a polynomial has a root x1 = a+br+cr2 with a, b, c ∈ Q, then the numbers

x2 = a+ bε3r + cε23r
2 and x3 = a+ bε23r + cε3r

2

are also its roots.
(a′) Strong Irreducibility Lemma. The polynomial x3 − r3 is irreducible over

Q[ε3] = {x+ yε3 : x, y ∈ Q}.

(b′) Strong Linear Independence Lemma. If k, `,m ∈ Q[ε3] satisfy k + `r + mr2 = 0, then
k = ` = m = 0.

2.7. Assume that r ∈ R \Q and a, b, c, r3 ∈ Q.
(a) Rationality Lemma. The number a+ br + cr2 is a root of some cubic polynomial.
(b) Proposition. Assume that an irrational number a+ br + cr2 is a root of a polynomial

which is irreducible over Q; then this polynomial is cubic and it has exactly one real root.

3 Equations of degree 3 solvable using one radical

Initially, Cheburashka gets a number 1. To the numbers he already has got before, he can apply
addition, subtraction, multiplication, and division (by a non-zero number) for free. Moreover,
for one yuan Cheburashka can extract an arbitrary degree root of a positive number which
he already has got during the calculations. All other operations are out of his reach. But he
performs the allowed operations with absolute precision, and he has an unbounded memory.

3.1. (a) Help Cheburashka in obtaining 3
√

2 + 3
√

4 for 1 yuan.

(b) Help Cheburashka in obtaining
3
√

2 +
√

3 +
3
√

2−
√

3 for 2 yuans.

(c) Help Cheburashka in obtaining
1

1 + 5 3
√

2 + 3
√

4
for 1 yuan, if the operation of division is

prohibited, but he may use all rational numbers for free.

3.2. (a) A number can be obtained for 1 yuan paid for extracting a square root, if and only
if the number has the form a±

√
b with a, b ∈ Q.

(b) A number can be obtained for 1 yuan paid for extracting a cubic root, if and only if the
number has the form a+ br + cr2 with r ∈ R and a, b, c, r3 ∈ Q.

(c) Calculator Theorem. A number can be obtained for 1 yuan, if and only if the number
has the form A(r), where A is a polynomial and r is a real number such that rn ∈ Q for some
positive integer n.
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3.3. (a) Present some nonzero rational numbers p and q such that Cheburashka can obtain
one of the roots of x3 + px+ q = 0 for 1 yuan.

(a′) Present some nonzero rational numbers p and q such that the polynomial x3 + px + q
has no rational roots, but Cheburashka still can obtain one of its roots for 1 yuan.

(b3) Can Cheburashka obtain at least one root of x3 + 3x+ 6 = 0 for 3 yuans?
(b2) . . . for 2 yuans?
(b1)* . . . for 1 yuan?
(c) If an equation of degree 3 with rational coefficients has exactly one real root, then

Cheburashka can obtain this root for 2 yuans.
(d)* Main problem. Given rational p and q, determine whether Cheburashka can obtain

at least one root of the equation x3 + px+ q = 0 for 1 yuan.

3.4. * (a) Does there exist a cubic equation with rational coefficients such that Cheburashka
cannot get any of its roots for 2 yuans?

(b) The same question about 10000 yuans.

Let us reformulate the previous problems using mathematically precise language. Consider
a calculator with the following buttons:

1, +, −, ×, : and n
√

for every n.

The calculator has absolute precision and unlimited memory. It returns an error if division by
0 is carried out.

Assume first that the calculator is real, i.e. that it works only with real numbers; so
extracting an even degree root of a negative number results in an error.

Here are mathematically rigorous (and slightly modified) statements of the problems 3.3.cd
and 3.4.

Proposition on Solvability in real radicals. If a cubic polynomial with rational coeffi-
cients has precisely one real root, this root can be obtained using the real calculator.

Moreover, this can be done by extracting roots only twice, once of the second and once of
the third degree.

Theorem on Insolvability in real radicals. There exists a cubic polynomial with rational
coefficients (e.g. x3−3x+1) such that none of its roots can be obtained using the real calculator.

Moreover, if a cubic polynomial with rational coefficients has three distinct real roots, then
none of these roots can be obtained with the real calculator.

Notice here that if there are exactly two roots, then they are both rational (cf. prob-
lem 1.3.ab).

Question. How can one decide whether the cubic polynomial with rational coefficients has
a root which can be obtained on the calculator using the radical sign only once? Is there an
algorithm deciding whether a polynomial belongs to the described class?

4 Equations of degree 4 solvable using one radical

We say that a polynomial is k-solvable if one of its roots can be obtained by using the real
calculator with extracting at most k roots.

4.1. (a) Assume that a biquadratic polynomial (of degree 4) has a real root. Is this poly-
nomial necessarily 2-solvable?

(b)* Given rational p and s, determine whether the polynomial x4 + px2 + s is 1-solvable.
(c)* Is every quartic polynomial having a real root 4-solvable?

4.2. Main problem. (4, 1) Given a polynomial x4 + px2 + qx + s = 0 with rational
coefficients, determine whether it is 1-solvable.

Is there an algorithm for deciding 1-solvability?
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(4, 2) (The jury does not know a solution) The same question for 2-solvability.

(n) (The jury does not know a solution for any n ≥ 4) Given a polynomial of degree n with
rational coefficients, determine whether it is ∞-solvable?

Is there an algorithm for deciding ∞-solvability?

(n, k) (The jury does not know a solution) Given a polynomial of degree n with rational
coefficients, determine whether it is k-solvable?

Is there an algorithm for deciding k-solvability?

4.3. (a) Present rational numbers p, q, and s such that qs 6= 0 and that the polynomial
x4 + px2 + qx+ s is irreducible over Q and 1-solvable.

(b) Determine whether the polynomial x4 − 6x2 + 72x− 99 is 1-solvable.

4.4. Assume that p < 0 and that the cubic resolution of the polynomial x4 + px2 + qx + s
has a root α ∈ Q such that −p > 2α > p. Prove that this polynomial is 2-solvable (on the real
calculator).

4.5. If a degree 4 polynomial irreducible over Q has a root that can be obtained using real
calculator by extracting only one root, and this extraction provides a root of degree 4, then the
cubic resolution of the polynomial has a rational root.

4.6. Formulate and prove the analogues of the Conjugation Theorems 2.3.d and 2.6.d for
degree 4 polynomials.

5 Formal expressibility in real radicals

The priority goal of the first problem in this section is to formalize the notion of ’to determine’.
We give such a formalization after the problem statement. So you have a chance to approach
the basic definition starting from simple examples. The solutions themselves should not be
difficult for you.

5.1. (a) Given x+ y and xy, is it always possible to determine x− y? To determine x?

The primary formalization of the notion ’to determine’ in the problem above can be given
in the following way: does there exist a mapping f : R2 → R such that f(x+ y, xy) = x− y for
all x, y ∈ R?7

(b) Given x+y+z, xy+yz+zx and xyz, is it always possible to determine (x−y)(y−z)(z−x)?

(The formalization is similar to that in (a).)

The basic definition in this text is yet another formalization of the notion ’to determine’.

Definition. A polynomial f ∈ R[x1, . . . , xn] is expressible in real radicals via the
collection of polynomials a1, . . . , at ∈ R[x1, . . . , xn], if one can append f to this collection
by a sequence of operations of the following types:
• if several polynomials b1, . . . , bk are already in the collection and F ∈ R[t1, . . . , tk] is

an arbitrary polynomial, then it is allowed to append the polynomial F (b1, b2, . . . , bk) to the
collection;
• if some polynomial in the collection has the form pk for some p ∈ R[x1, . . . , xn] and

integer k > 1, then one may append p to the collection.

7Another formalization of the notion ’to determine’ which is not further used is as follows: does there exist
a mapping f from R2 to the set 2Rfin of all finite subsets of R such that f(x + y, xy) 3 x − y for all x, y ∈ R?
Let us show that this question (together with its generalizations to several variables) is trivial.

Mappings f : R2 → 2Rfin (i.e. real finite-valued functions of R2) may be defined by formulae. For example, the
formula f(x) = ±x is a reduction of the formula f(x) = {x,−x} which defines the (at most)-2-valued mapping

f . (Exercise: Establish how-many-valued mapping is defined by the formula f(x) =
±x
±x

.) Denote by f(p, q) the

(finite) set of (real) solutions of the equation t2 +pt+q = 0. Then the formula x−y = f(x+y, xy)−f(x+y, xy)
defines the desired mapping (Why?).
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For example, if a collection contains x2 + 2y and x − y3, then one may apply the first
operation in order to append the polynomial −5(x2 + 2y)2 + 3(x2 + 2y)(x− y3)6; moreover, if a
collection already contains x2− 2xy + y2, then applying the second operation one may append
x− y and y − x.

5.2. Determine if the following polynomial is expressible in real radicals via x+ y and xy:
(a) x− y; (b) x.

The answer to 5.2.b shows that the root of a quadratic equation is expressible in real radicals
via its coefficients. The formalization of this statement will be given later in problem 6.17.

5.3. (a,b,c) Represent

x2 + y2 + z2, x2y + y2z + z2x+ x2z + z2y + y2x, x3 + y3 + z3

as polynomials in

σ1 = x+ y + z, σ2 = xy + yz + zx and σ3 = xyz.

(d) Is (x8y + y8z + z8x)(x8z + z8y + y8x) representable as a polynomial in σ1, σ2, σ3?

5.4. (a) The multi-degree of the product of polynomials (in several variables) is the sum of
their multi-degrees.

(b) We say that a polynomial f in two variables x, y is symmetric if the polynomials f(x, y)
and f(y, x) are equal. Prove that every symmetric polynomial in two variables x, y is a poly-
nomial in x+ y and xy.

(c) We say that a polynomial f in three variables x, y, z is symmetric if the polynomials
f(x, y, z), f(y, z, x) and f(y, x, z) are equal. Prove that every symmetric polynomial in three
variables x, y, z is a polynomial in σ1, σ2 and σ3.

(d) Formulate and prove the main theorem about symmetric polynomials in n variables.

5.5. Determine whether the following polynomial is expressible in real radicals via σ1, σ2, σ3:
(a) (x− y)(y − z)(z − x); (b) x2y + y2z + z2x. (c)* x?
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Hints and Solutions for the initial presentation

1.1. Use the substitution (a) y = x+ b
3a

and (b) y = x+ b
4a

.

1.2. (a) Answer: 1. Since the degree is odd, the polynomial has a real root. Since the
polynomial is monotonous, this root is unique.

(b) Answer: 3. Let f(x) = x3−4x−1. We have f(−2) < 0, f(−1) > 0, f(0) < 0, f(3) > 0.
By the Intermediate value theorem, the equation has three real roots.

1.3. (c) Hint: Determine the intervals of monotonicity of f(x) = x3 + px + q. Find the
points of local extrema and the values of f at these points. For this purpose, explore the sign

of
f(x1)− f(x2)

x1 − x2
(or, if you are educated enough, take a derivative of f).

1.4. (b) Answer: x = −1− 3
√

2.
Hint: x3 − 3 3

√
2x+ 3 = x3 − 3bcx+ (b3 + c3), where b = 1, c = 3

√
2.

1.5. (a) The given polynomial vanishes at a = −b − c, which means that it is divisible by
a+ b+ c = a− (−b− c). Now one may divide a3− 3abc+ (b3 + c3) by a+ b+ c in a usual way.

2.1. (a′′) Answer: Yes.
1

7 + 5
√

2
=

7− 5
√

2

72 − 2 · 52
= −7 + 5

√
2.

(f) Answer: No.
Arguing indirectly, we assume

√
2 + 3
√

2 = a+
√
b for some a, b ∈ Q. This number is a root

of the polynomial P (x) = ((x−
√

2)3− 2)((x+
√

2)3− 2) having rational coefficients. Applying
Conjugation Theorem 2.3.d to r =

√
b and polynomial P (a + t) (or applying Corollary 2.3.e

to r =
√
b and polynomial P (t)), we obtain P (a −

√
b) = 0. By the rational roots theorem,

the polynomial P has no rational roots. Therefore, b 6= 0, so the roots a ±
√
b are distinct.

However, the polynomial P has only two real roots, namely
√

2 + 3
√

2 and −
√

2 + 3
√

2. Thus
a+
√
b =
√

2 + 3
√

2 and a−
√
b = −

√
2 + 3
√

2, whence 3
√

2 = a ∈ Q. This is a contradiction.

2.3. (a) If the polynomial x2 − r2 is reducible over Q, then it has a linear factor with
rational coefficients. Thus it has a rational root, which is impossible since ±r /∈ Q.

(b) If b 6= 0, then r = −a/b ∈ Q which is impossible. Hence b = 0, and thus a = 0 as well.
(c) Divide our polynomial by x2 − r2 with residue; this residue is linear, and it vanishes

at x = r. By (b), the residue is 0, as required.
(d) Follows from (c), since the polynomial x2 − r2 has roots ±r.
3.1. (a) For 1 yuan we get 3

√
2, which allows us to obtain 3

√
2 + 3
√

4 = 3
√

2 + ( 3
√

2)2.

3.2. (a) Clearly, each number of required form can be obtained for 1 yuan. It remains to
prove that all such numbers are of this form. Surely, it would suffice to prove that the set of
all numbers of the form a ±

√
b is closed under arithmetical operations; but this is obviously

false. So we act in a bit different way.
Let r =

√
s be a square root which has been obtained for 1 yuan (so s ∈ Q). If r ∈ Q,

then the result is trivial since all obtained numbers are rational. Otherwise, we show that all
the obtained numbers have the form a+ br with a, b ∈ Q. It suffices to prove that the result of
an arithmetical operation applied to two numbers of this form also has the same form. This is

trivial for all operations except division, for which the claim holds due to
1

a+ br
=

a− br
a2 − b2s

.

4.1. (a) Answer: yes. Since the squares of a real root of a biquadratic polynomial is a roots
of a quadratic equation, this square may be obtained for one extraction. Thus the root itself
can be obtained in two extractions.

5.1. (a) Consider the pairs (x, y) = (1, 2) and (x, y) = (2, 1).

5.2. (a) (x− y)2 = (x+ y)2 − 4xy.

5.4. (b) We use the lexicographical induction on the multi-degree of the polynomial. Given
a symmetric polynomial f of multi-degree (α, β) with α ≥ β (i.e. with the lexicographically
leading monomial of the form kxαyβ), one may reduce it to the polynomial f−k(xy)β(x+y)α−β.
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6 Additional Problems at the Semifinal

1. Solving equations of degree 3 and 4

6.1. * (a) Formulate and prove the theorem describing all real roots of the equation x4 +
px2 + qx + s = 0. In the formulation and proof, you may use a root α of the cubic resolution
of this equation.

Hint. Use Ferrari’s method (see problem 1.7.ab). Do not forget to treat all possible cases!
(b) The same for all complex roots of this equation.

2. Representability with use of only one radical

6.2. Determine whether the following number can be represented in the form a0 + a1
7
√

2 +
a2

7
√

22 + · · ·+ a6
7
√

26 with a0, a1, a2, . . . , a6 ∈ Q:
(a)
√

3; (b) cos(2π/21); (b′) any of the roots of the equation x7 − 4x+ 2;
(c) 11
√

3; (d) 7
√

3.

Hint: Apply lemmas formulated below.

6.3. Let q be a prime number, and let r ∈ R \Q be a number such that rq ∈ Q.
(a) Irreducibility Lemma. The polynomial xq − rq is irreducible over Q.
(b) Linear Independence Lemma. If r is a root of a polynomial A whose degree is less than q,

then A = 0.
(c) Conjugation Theorem. If r is a root of a polynomial, then all the numbers of the

form rεkq , k = 1, 2, 3, . . . , q − 1, are also roots of this polynomial.
(d) Rationality Lemma. If A is a polynomial, then the number A(r) is a root of some

nonzero polynomial of degree at most q.

In the sequel, we use the notation

Q[εq] = {a0 + a1εq + a2ε
2
q + · · ·+ aq−2ε

q−2
q | a0, . . . , aq−2 ∈ Q}.

6.4. Let q be a prime number, and let r ∈ C \Q[εq] be a number such that rq ∈ Q[εq].
(a) Prove that the polynomial xq − rq is irreducible over Q[εq].
(b,c) Prove the analogues of the parts (b,c) of the previous problem for the polynomials

with coefficients in Q[εq].

6.5. * Let q be a prime number, and let r ∈ R \Q be a number such that rq ∈ Q.
(a) Strong Irreducibility Lemma. The polynomial xq − rq is irreducible over Q[εq].
(b) Strong Linear Independence Lemma. If A is a polynomial of degree less than q with

coefficients in Q[εq] and A(r) = 0, then A = 0.

6.6. (a) Proposition. Assume that a polynomial (of degree greater than 1) is irreducible
over Q and has a root of the form A(r), where A is a polynomial and r is a real number such
that rq ∈ Q for some prime q. Then this polynomial has degree q; moreover, if q 6= 2, it has no
other real root.

(b) Does the statement still hold if we replace the primality condition for q by the condition
r2, . . . , rq−1 6∈ Q?

3. Equations of degree 3 solvable using one radical

Set

Dpq =
(p

3

)3
+
(q

2

)2
.

We regard every implication in the next problem as a separate problem for which you may
submit solution.

8



6.7. Theorem. For a cubic equation x3+px+q = 0 with rational coefficients, the following
conditions are equivalent:

(1-solvability) at least one of its roots can be obtained on the real calculator with extracting
at most one root;

(a+br+cr2) this equation has a root of the form a+br+cr2, where r ∈ R and a, b, c, r3 ∈ Q;
(
√
Dpq ∈ Q) either it has a rational root, or Dpq ≥ 0 and

√
Dpq ∈ Q.

6.8. If y0, y1, y2 are the three complex roots (with multiplicity) of the polynomial x3+px+q,
then

−108Dpq = (y0 − y1)2(y1 − y2)2(y0 − y2)2.

Assume that µ ∈ C. We introduce the following notation:

Q[µ] = {P (µ) | P is a polynomial with rational coefficients}.

Notice that this notation agrees with the particular case introduced above.

6.9. Assume that µ is a root of some nonzero polynomial. Prove that 1/t ∈ Q[µ] for every
nonzero t ∈ Q[µ].

6.10. (a) Assume that r ∈ R \ Q and rn ∈ Q for some integer n > 1. Take any α ∈ Q[r].
Then there exists a positive integer k such that α ∈ Q[rk] and rk ∈ Q[α] (in other words,
Q[rk] = Q[α]).

(b) Proposition. Assume that a polynomial of degree n is irreducible over Q; moreover,
assume that this polynomial is 1-solvable. Then this polynomial has a root of the form A(r),
where A is a polynomial, and a number r ∈ R satisfies rn ∈ Q.

The complex calculator has the same buttons as the real one, but it operates with complex
numbers, giving all the complex values of the root when the button ‘ n

√
’ is pressed. We say that

a number can be obtained using the complex calculator, if the calculator can be used to get a
set of numbers containing the given one.

We say that a polynomial is k-solvable in the complex sense if one of its roots can be obtained
on the complex calculator using only k root extractions. The main problem 4.2 (as well as other
problems in this section) remains interesting if we replace the real k-solvability by the complex
one. The complex versions of these problems may turn out to be easier than the real ones.

6.11. (a) Every cubic polynomial is 2-solvable in the complex sense.
(b) Given rational p and q, decide whether the polynomial x3 + px + q is 2-solvable in the

complex sense.
(c) Every polynomial of degree 4 is 4-solvable in the complex sense.

4. Equations of degree 4 solvable using one radical

6.12. Conjugation Theorem. Let a, b, c, d, r4 ∈ Q and r2 6∈ Q. Assume that the number
x0 = a+ br + cr2 + dr3 is a root of some polynomial. Then the numbers

x1 = a+ bri− cr2 − dr3i, x2 = a− br + cr2 − dr3, x3 = a− bri− cr2 + dr3i

are also its roots.

6.13. Let a polynomial of degree 4 (with zero coefficient of x3) have complex roots y0, y1,
y2, and y3 (regarding multiplicity). Then

(a) the number
y0y1 + y2y3

2
is a root of the cubic resolution8 of our polynomial;

8Recall that the cubic resolution Rf (α) of a polynomial f(x) = x4+px2+qx+ s is a polynomial in α defined
as the discriminant of the quadratic polynomial (x2 + α)2 − f(x) with respect to x, i.e.,

Rf (α) = q2 − 4(2α− p)(α2 − s) = −8α3 + 4pα2 + 8sα+ (q2 − 4ps).
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(b) the numbers
y0y1 + y2y3

2
,
y0y2 + y1y3

2
,
y0y3 + y1y2

2
are all the complex roots of the cubic

resolution (regarding multiplicity).

6.14. Assume that p, q, s ∈ Q and p < 0 < q.
(a) If q2 = 2p(4s − p2) and

√
2q ∈ Q, then the polynomial x4 + px2 + qx + s has a root

which can be obtained using the real calculator extracting only one root which is the root of
degree four.

(b) Is the converse true?

5. Formal expressibility in real radicals

The negative answer to 5.5.c (and to problem 6.17.b below) show that a root of a cubic equation
is not expressible in real radicals via its coefficients. Try to realize why this result does not
contradict the Cardano Formula which expresses the root of a cubic equation via its coefficients
(the clue to the answer is in the expression for discriminant in terms of roots, see problem 6.8).

Definition. The polynomial f in variables x1, x2, . . . , xn is cyclically symmetric if the
polynomials f(x1, x2, . . . , xn) and f(x2, x3 . . . , xn−1, xn, x1) are equal.

6.15. Express x1x3 + x3x5 + x5x7 + x7x9 + x9x1 in radicals via cyclically symmetric poly-
nomials in x1, x2, . . . , x10.

The negative answer to 5.5.c can be derived from the following problem.

6.16. Let f, g ∈ R[x, y, z].
(a) If the polynomial f q is cyclically symmetric for some positive integer q, then f itself is

cyclically symmetric.
(b) If fg = 0, then f = 0 or g = 0.
(c) If fg 6= 0, then f 2 + fg + g2 6= 0.

6.17. We say that the generic polynomial equation of degree n is solvable in real radicals if
there exist
• non-negative integers s, k1, . . . , ks and
• polynomials p0, p1, . . . , ps with real coefficients and in n, n+ 1, . . . , n+ s variables, respec-

tively,
such that if a0, . . . , an−1, x ∈ R and

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0,

then there are f1, . . . , fs ∈ R for which

fk11 = p0(a0, . . . , an−1), fk22 = p1(a0, . . . , an−1, f1), . . .

. . . fkss = ps−1(a0, . . . , an−1, f1, . . . , fs−1), x = ps(a0, . . . , an−1, f1, . . . , fs).

Note that we have defined a property of the number n rather than of a specific equation with
given coefficients like in the Galois Theorem [S].

(a) The generic polynomial equation of degree 2 is solvable in real radicals.
(b)* The generic polynomial equation of degree 3 is not solvable in real radicals.
(c)* The similar result for each n ≥ 3.

The results of problems 5.5.c and 6.17.b (and the comparison of them with the Cardano
Formula) show that the definition of expressibility in real radicals given above is not a perfect
formalization of the concept of solvability in radicals. On one hand, it is more reasonable to
consider complex numbers instead of reals — this idea is realized in Section 7. On the other
hand, we can work with numbers rather than with polynomials — this leads to the Galois
Theorem [S]. However, investigating this imperfect formalization, one may see the main idea
of the proof of Ruffini’s theorem, see [S’].
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Hints and Solutions distributed at the Semifinal

1. Solving equations of degree 3 and 4

1.3. (c) Answer: If p = q = 0, then there is one root. Otherwise, if Dpq > 0, then there is one
root, if Dpq = 0, there are two roots, and if Dpq < 0, there are three roots.

1.4. (c) Answer: x = −1− 3
√

2.
Hint: By the result of 1.5.a, the equation x3 − 3 3

√
2x+ 3 = 0 is equivalent to the equation

(x+ b+ c)(x2 + b2 + c2 − bc− bx− cx) = 0, where b = 1 and c =
3
√

2.

(d) Answer: 2 cos π
9
, 2 cos 7π

9
, and 2 cos 13π

9
.

Substituting x = 2y we transform the equation x3 − 3x− 1 = 0 to 4y3 − 3y = 1
2
. Using the

identity cos 3α = 4 cos3 α − 3 cosα we get that all the numbers cos π
9
, cos 7π

9
, and cos 13π

9
are

roots of 4y3 − 3y = 1
2
.

1.5. (a,b) Answer:

a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca) = (a+b+c)(a+bε3+cε23)(a+bε23+cε3).

1.6. (a) Answer: Del Ferro’s method is applicable, if Dpq ≥ 0.
Theorem. Let p, q ∈ R.
If Dpq ≥ 0, then the equation x3 + px+ q = 0 has a unique real root

3

√
−q

2
+
√
Dpq − 3

√
q

2
+
√
Dpq.

If Dpq = 0, then all real roots of the equation are −2 3
√
q/2 and − 3

√
q/2 (they are distinct,

provided that q 6= 0).
(b) Theorem. Let p, q ∈ C and pq 6= 0. Let
•
√
Dpq be any of the two values of a square root of Dpq;

• u be any of the three values of a cubic root of − q
2
−
√
Dpq;

• v = − p
3u

. (Since p 6= 0, we have (q/2)2 6= Dpq, whence u3 = − q
2
−
√
Dpq 6= 0.)

Then the three roots of the equation x3 + px + q = 0 are u + v, uε3 + vε23, and uε23 + vε3.
(They are not necessarily distinct, even if q 6= 0.)

1.7. Answers:

(a)
−3
√

2±
√

10 + 12
√

2

2
; (b)

−
√

2±
√

4
√

2− 2

2
; (c)

√
2±

√
8
√

2− 6

2
;

(d)
√

2± ( 4
√

2 + 4
√

8).

2. Representability with use of only one radical

2.1. Answers: (a,a′′,b,c,d) — yes; (a′,e,f,g,h) — no.

(a,c)
√

3 + 2
√

2 =
3
√

7 + 5
√

2 = 1 +
√

2.
(a′′) Notice that (1+5 3

√
2+ 3
√

4)(3+ 3
√

2−8 3
√

4) = −75. (This equality can be found easily by
the method of undetermined coefficients. Another way of obtaining it is the Euclid algorithm
used to find the linear representation of the g.c.d. of x3−2 and x2+5x+1, see solution of 3.2.b;
that problem claims in fact that such coefficients can be found always.) Therefore,

1

1 + 5 3
√

2 + 3
√

4
= − 1

25
− 1

75
· 3
√

2 +
8

75
· ( 3
√

2)2.

(b)
3
√√

5 + 2− 3
√√

5− 2 = 1.
(d) cos(2π/5) = (

√
5− 1)/4.
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(e) Assume that it is possible. Then we get 2 = ( 3
√

2)3 = (a3 + 3ab) + (3a2 + b)
√
b. Since

3a2 + b 6= 0, we have
√
b ∈ Q. Thus 3

√
2 ∈ Q, which is a contradiction.

Another proofs may be obtained similarly to those of (f,g) or of Proposition 2.4.
(g) Assume that it is possible. By 2.2, our number cos(2π/9) is a root of 4x3 − 3x = −1

2
.

Now by Corollary 2.3.f this equation has a rational root, which is wrong.
Another proof is similar to that of Proposition 2.4.

2.2. By the triple angle formula for cosine we have −1/2 = cos(2π/3) = 4 cos3(2π/9) −
3 cos(2π/9).

2.3. (e) Let P be a given polynomial, and set G(t) = P (a + bt). Then G(r) = 0. By (d),
we get G(−r) = 0.

(f) Follows from (e) combined with the Vieta theorem.

2.4. Arguing indirectly, suppose that the given polynomial P (x) has a root x0 = a ±
√
b.

By corollary 2.3.e and analogously to it, the number x1 = a∓
√
b is also a root of P . If b = 0,

then the statement is obvious; so we assume that b 6= 0. This implies x0 6= x1. Therefore, P
is divisible by (x − a)2 − b. Since the degree of P is greater than 2, it is reducible. This is a
contradiction.

2.5. Answer: (a,b,c,d,e,g) no; (f) yes.
Set r = 3

√
2.

(a) First solution. Assume that it is possible. Then

3 = (a2 + 4bc) + (2ab+ 2c2)
3
√

2 + (2ac+ b2)
3
√

4.

Since the polynomial x3 − 2 has no rational roots, it is irreducible over Q. Thus, 2ab + 2c2 =
2ac + b2 = 0 (cf. 2.6.b). So we have b3 = −2abc = 2c3. It follows that either b = c = 0 or
3
√

2 = b/c. Both cases are impossible.
Second solution. Assume that it is possible. Set P (x) = x2 − 3. Then P has three roots

x1, x2, and x3 defined in Corollary 2.6.e. Since none of them is rational, the equality b = c = 0
does not hold. So, by Strong Linear Independence Lemma 2.6.b′, all three roots are distinct.
This is a contradiction.

(b) Assume that it is possible. The number cos(2π/9) is a root of the equation 4x3−3x = −1
2
.

Its other two real roots are cos(8π/9) and cos(4π/9).
On the other hand, the polynomial 8x3 − 6x− 1 has three roots x1, x2, x3 defined in Corol-

lary 2.6.e. Since none of them is rational, the equality b = c = 0 is impossible. By Strong
Linear Independence Lemma 2.6.b′, all three roots are distinct.

Since εk3 = ε−k3 , we have x2 = x3. Thus, x2 and x3 can not be both real and distinct. This
is a contradiction.

(c) Assume the contrary. According to Rationality Lemma 2.7.a, there exists a cubic poly-
nomial whose root is a + br + cr2. But the polynomial x5 − 3 is irreducible over Q. This is a
contradiction.

2.6. (a) Suppose that x3−r3 is reducible. Then it has a rational root. This is a contradiction.
(b) Assume the contrary. Divide x3 − r3 by a + bx + cx2 with residue. Due to (a), the

residue is nonzero. Both polynomials x3 − r3 and a + bx + cx2 have a root x = r. Hence the
residue has the same root x = r. This implies that the residue is linear and has an irrational
root, which is impossible.

(c) Divide our polynomial by x3 − r3 with residue. Substituting x = r and applying Linear
Independence Lemma (b), we get that the residue is zero.

(d) By (c), if R3 = r3, then R is a root of our polynomial.
(e) Let P be the given polynomial, and set G(t) = P (a+ bt+ ct2). Then G(r) = 0. By (d)

we get G(rε3) = 0 = G(rε23).
(a′) If our polynomial is reducible, it must have a root in Q[ε3]. Therefore, r ∈ Q[ε3]∩R = Q,

which is a contradiction.
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This part can also be derived from (b′).
(b′) Consider the real and imaginary parts separately.
This part can also be derived from (a′).

2.7. (a) First solution. Due to the substitution x = y + a, it suffices to prove the claim for
the vase when a = 0. Now notice that the number t = br+cr2 satisfies t3 = b3r3 +c3r6 +3bcr3t.

(In other words, by the equality from the solution of 1.5.a, the number a+ br+ cr2 is a root
of the polynomial (x− a)3 − 3bcr3(x− a)− b3r3 − c3r6.)

Second solution. Set x0 = a + br + cr2. Expand the numbers xk0 with k = 0, 1, 2, 3 as
polynomials in r:

xk0 = ak + bkr + ckr
2.

In order to solve the problem, it suffices to find numbers λ0, λ1, λ2, λ3 ∈ Q, not all zeroes, such
that λ0 + λ1α + λ2α

2 + λ3α
3 = 0. This condition will be satisfied if these numbers satisfy the

system of equations

λ0a0 + · · ·+ λ3a3 = 0, λ0b0 + · · ·+ λ3b3 = 0, λ0c0 + · · ·+ λ3c3 = 0.

It is known that a homogeneous (i.e. with zero right hand parts) system of linear equations with
rational coefficients has a nontrivial rational solution, provided that the number of equations
is less than the number of variables. This yields the required result.

The obtained polynomial has degree 3 and is irreducible; this follows from problem 2.6.eb′.

Remark. Yet another proof is shown in the first solution of (more general) Rationality
Lemma 6.3.d.

3. Equations of degree 3 solvable using one radical

3.1. (b) Clearly, Cheburashka can obtain
3
√

2 +
√

3 for 2 yuans. It remains to notice that

3
√

2−
√

3 =
1

3
√

2 +
√

3
=
(

3
√

2 +
√

3
)2 · (2−√3).

(The last equality shows that one may avoid division by an irrational number in this case.)

(c) See the solution of 2.1.a′′.

3.2. (b) Clearly, each described number can be obtained for 1 yuan. To prove the converse,
as before, we show that all the obtained numbers have the form a+ br + cr2, where r = 3

√
s is

a cubic root obtained for 1 yuan. The only nontrivial step is, however, a bit harder now: we

need to prove that a number
1

a+ br + cr2
has the required form (in case r = 3

√
s /∈ Q).

By the Irreducibility Lemma, the polynomial x3 − r3 is irreducible over Q, so it is coprime
with a + bx + cx2. Therefore, there exist polynomials g and h such that h(x)(a + bx + cx2) +

g(x)(x3 − r3) = 1. Then h(r) =
1

a+ br + cr2
, which yields the result.

3.3. (a) As an example one may take the equation x3 − 3x+ 2 = 0 with root 1.
(a′) An example is provided by the equation x3 − 6x − 6 = 0 with a root 3

√
2 + 3
√

4 (cf.
problem 3.1.b). One may find this equation as in the proof of Rationality Lemma 2.7.a.

(b3, b2) Answer: Yes.
By del Ferro’s method we get that one of the roots of our equation is

3

√
−3 +

√
10 +

3

√
−3−

√
10 =

3

√
−3 +

√
10− 1

3
√
−3 +

√
10
.

(b1) A negative answer follows from the solution of (d), i.e., from Theorem 6.7.
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(c) By 1.1.a we may assume that the equation has the form x3 + px+ q = 0. If p = 0, the
statement is trivial. Otherwise, since the equation has only one real root, we obtain hat Dpq > 0

due to the solution of 1.3. Therefore, the number u = 3

√
− q

2
−
√
Dpq appearing in the theorem

in solution of 1.6.a can be obtained for 1 yuan. After that, the number v = 3

√
− q

2
+
√
Dpq = − p

3b

is obtained for free. By the same theorem, a root u+v of the initial equation also can be obtained
for 2 yuans.

(d) See Theorem 6.7.

4. Equations of degree 4 solvable using one radical

4.1. (b) Hint: One may express the root x0 of the polynomial in terms of p and s, and then
equalize this expression for x0 to br + cr2 + dr3, where b, c, d, r4 ∈ Q, r ∈ R.

(c) Conjecture: no.
Try to prove the following statement: Assume that a degree 4 polynomial has a cubic

resolution with three real roots (in other words, this resolution has a negative discriminant);
then this polynomial is not 10000-solvable. On the other hand, the formula presenting a root
of a degree four polynomial whose the cubic resolution does not have three distinct real roots
(or it has nonnegative discriminant) using four root extractions is the aim of problem 6.1.a.

4.3. (a) For example, the polynomial x4 − 12x2 − 24x − 14 from problem 1.7.d has a
root 4

√
2 +
√

2 + 4
√

8. (How can one find this polynomial, given its root?)
(b) Answer: yes, due to problem 6.14.a.

5. Formal expressibility in real radicals

5.1. (b) Consider the triples (x, y, z) = (0, 1,−1) and (x, y, z) = (0,−1, 1).

5.2. (b) x =
(x+ y) + (x− y)

2
.

5.3. Answer: (a) σ2
1 − 2σ2; (b) σ1σ2 − 3σ3; (c) σ3

1 − 3σ1σ2 + 3σ3.
(d) Apply 5.4.c.

5.4. (c) Again, we use the lexicographical induction on the multi-degree of the polynomial.
Given a symmetric polynomial of multi-degree (k, `,m) with k ≥ ` ≥ m and k ≥ 1 (i.e., the
lexicographically leading monomial of the polynomial has the form axky`zm), one may reduce
it to the polynomial f − aσk−`1 σ`−m2 σm3 .

5.5. (a) Notice that the polynomial (x − y)2(y − z)2(z − x)2 is symmetric. One may also
reduce this problem to the next one.

(b) Set M = x2y+y2z+z2x and N = y2x+x2z+z2y. Then M+N and MN are symmetric
polynomials. Therefore, they are polynomials in elementary symmetric functions σ1, σ2, σ3. (We
present the explicit expressions in the solution of 6.8.) Finally, M itself now can be expressed
via M +N and MN by the formula providing the roots of a quadratic equation.
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Hints and Solutions distributed at the Final

1. Solving equations of degree 3 and 4

1.6. Proof of the theorem formulated in (a). Set u = − 3

√
q
2

+
√
Dpq and v = 3

√
− q

2
+
√
Dpq. We

have uv = −p/3 and u3 + v3 = −q. By the formula from the solution of 1.5.a applied to a = x,
b = −u, and c = −v, the number u+v is a root of the polynomial x3+px+q = x3−3uvx−u3−v3.
Since 2(x2 +u2 +v2−xu−xv−uv) = (x−u)2 +(x−v)2 +(u−v)2, in the case Dpq > 0 we have

no other roots, and if Dpq = 0, then there is an additional (multiple) root u = v = − 3
√
q/2.

Proof of the theorem formulated in (b). We have uv = −p/3 and u3 +v3 = −q. So it suffices
to apply the formula from the solution of 1.5.b to a = x, b = −u, and c = −v.

6.1. If q = 0, then the equation is biquadratic, so it is easy to solve it. Henceforth we
assume that q 6= 0.

(a) Theorem. Suppose that p, q, s ∈ R and q 6= 0. Then there exists α > p/2 such that
q2 = 4(2α− p)(α2 − s). For each such value of α define A =

√
2α− p. Then all the real roots

of the equation x4 + px2 + qx+ s = 0 are:

no roots, if 2α + p > 2|q|/A;

x± =
(
−A±

√
−2α− p+ 2q

A

)
/2, if − 2q/A < 2α + p ≤ 2q/A;

y± =
(
A±

√
−2α− p− 2q

A

)
/2, if 2q/A < 2α + p ≤ −2q/A;

x±, y±, if 2α + p ≤ −2|q|/A

.

Proof. Set R(x) = 4(2x− p)(x2− s)− q2. Note that R(p/2) = −q2 < 0. On the other hand,
for large enough values of x we have R(x) > 0. By the Intermediate value theorem, there exists
α > p/2 such that R(α) = 0.

Since p = 2α − A2 and α is a root of the resolution, we get s = α2 − q2

4(2α−p) = α2 − q2

4A2 .
Therefore,

x4 + px2 + qx+ s =
(
x2 − Ax+ α +

q

2A

)(
x2 + Ax+ α− q

2A

)
.

Solving two quadratic equations, we obtain the required formulas.

(b) Theorem. Suppose p, q, s ∈ C and q 6= 0. Denote by α any of the roots of the equation
q2 = 4(2α − p)(α2 − s), and let A be any of two values of square root of 2α − p. Then all the
roots of the equation x4 + px2 + qx+ s = 0 are(

A+

√
−2α− p− 2q

A

)
/2 and

(
−A+

√
−2α− p+

2q

A

)
/2,

where
√
y is a multi-valued function providing both values of the root of y. Notice that, since

q2 = 4A2(α2 − s) 6= 0, we have A 6= 0.
The proof is similar to the proof of the theorem in part (a).

Remark. One may also express all complex roots of the equation as

x = (±
√

2α1 − p±
√

2α2 − p±
√

2α3 − p),

where α1, α2, and α3 are the three roots of the cubic resolution, the number of ’minuses’ in the
formula is even, and the values of the roots are chosen so that their product equals −q.
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2. Representability with use of only one radical

2.1. (a′) Assume that this number is representable. The roots of the polynomial P (x) =

(x2− 2)2− 2 are four numbers of the form ±
√

2±
√

2, where the choices of signs can be made
independently. One can easily check that this polynomial has no rational roots, and moreover,
that the product of any two its roots is also irrational. This means that the polynomial P (x)
has no non-constant factors of degree at most 2, thus P (x) is irreducible. This contradicts
Proposition 2.4.

(h) (I. Braude-Zolotarev) The equality 1 + ε7 + ε27 + · · · + ε67 = 0 implies that cos(2π/7) +
cos(4π/7) + cos(6π/7) = −1/2. Applying the formulas cos 2α = 2 cos2 α − 1 and cos 3α =
4 cos3 α − 3 cosα we find that cos(2π/7) is a root of the equation 8t3 + 4t2 − 4t − 1 = 0.
Substituting u = 2t we get u3 + u2 − 2u− 1 = 0. Since the last equation has no rational roots,
the same holds for 8t3 + 4t2 − 4t − 1 = 0. Now the negative answer to the question follows
from 2.3.f.

2.5. As in the previous parts, we set r = 3
√

2.
(d) Similarly to (a) and (b), the complex roots of the polynomial x3 − 3 have the form

x1, x2, x3 (see Corollary 2.6.e). Thus, (a + br + cr2)εs3 = a + brε3 + cr2ε23 for some s ∈ {1, 2}.
By Strong Linear Independence Lemma 2.6.b′, we have a = 0 and bc = 0. This implies that
either 3

√
3 = br or 3

√
3 = cr2, which is a contradiction.

(e) Similar to (b).
(f) This equation has a root 3

√
2 + 3
√

4.
(g) The unique real root of this equation is 3

√
3 + 3
√

9. Assume that this number us repre-
sentable in the required form. Then all the numbers x1, x2, and x3 introduced in Corollary 2.6.e
are roots of the given equation. By the Strong Linear Independence Lemma 2.6.b′ these roots
are distinct, so they are all roots of the equation.

On the other hand, by the theorem formulated in the solution of 1.6.b, all roots of the
equation are

y1 =
3
√

3 +
3
√

9, y2 =
3
√

3ε3 +
3
√

9ε23, y3 =
3
√

3ε23 +
3
√

9ε3.

Since the equation has exactly one real root, we have x0 = y0; then we get either x1 = y1,
x2 = y2, or x2 = y1, x1 = y2.

Donote P (x) = 3
√

3x + 3
√

9x2. Set also S(x) = a + brx + cr2x2 for the former case above,
and S(x) = a + brx2 + cr2x for the latter case. Then the polynomial P (x) − S(x) has three
distinct roots 1, ε3, and ε23. But the degree of this polynomial is at most 2; thus P = S and, in
particular, either 3

√
3 = br or 3

√
3 = cr2. Both cases are impossible.

2.7. (b) By Rationality Lemma 2.7.a, there exists a cubic polynomial having a+ br+ cr2 as
a root. Since the given polynomial P is irreducible over Q and has the same root, we conclude
that degP ≤ 3.

On the other hand, P has three roots x1, x2, x3 defined in Corollary 2.6.e. Since P is
irreducible, none of its roots is rational. So, the equality b = c = 0 cannot hold. By Strong
Linear Independence Lemma 2.6.b′, all the roots of P are distinct. Hence degP = 3.

Since εk3 = ε−k3 , we have x2 = x3. This implies that x2 and x3 cannot be simultaneously real
and distinct. So, x2, x3 ∈ C \ R. It follows that P has a unique real root.

6.2. Answers: no (in all parts).
We use the following notation: r = 7

√
2 and A(x) = a0 + a1x+ a2x

2 + · · ·+ a6x
6.

(a) Assume that it is possible. By the Conjugation Theorem 6.3.c, the polynomial x2−3 has
roots A(rεk7) for k = 0, 1, 2, . . . , 6. Since this polynomial has no rational roots, Strong Linear
Independence Lemma 6.5.b yields that these roots are distinct. This is a contradiction.

(b′) Assume that it is possible. The given polynomial P has no rational roots by Eisenstein’s
criterion. Therefore, Conjugation Theorem 6.3.c and Strong Linear Independence Lemma 6.5.b
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imply that P has distinct roots xk := A(rεk7) with k = 0, 1, 2, . . . , 6. Since P (0) > 0, P (1) < 0,
and P (2) > 0, the polynomial P has a real root xk distinct from x0.

Notice now that εk7 = ε−k7 . Therefore, xk = xk = x7−k, which is a contradiction.
(b) Assume that it is possible. Let P be a polynomial such that cos 7x = p(cosx) (prove

that it exists!). The roots of the polynomial 2P (x) + 1 are real numbers yk = cos
2(3k + 1)π

21
with k = 0, . . . , 6. One of them, namely y2 = −1/2, is rational.

On the other hand, we claim that y0 is irrational. (Otherwise we would have ε221−2y0ε21+1 =
0, whence ε21 = a+i

√
b for some a, b ∈ Q. Then the number ε7 = ε321 would also have this form.

But the number ε7 is a root of the irreducible9 polynomial 1 + x+ · · ·+ x6, which contradicts
the analogue of Proposition 2.4 for the numbers of the form a+ i

√
b.)

Thus, the number y0 is an irrational root of the polynomial
2P (x) + 1

x− y2
which has degree 6.

However, Conjugation Theorem 6.3.c combined with Strong Linear Independence Lemma 6.5.b
show that this polynomial has seven distinct roots, which is absurd.

(c) Assume that the number has the required form. Then the Rationality Lemma 6.3.d
yields that there exists a nonzero polynomial of degree at most 7 having 11

√
3 as a root. This

contradicts the rational irreducibility of the polynomial x11 − 3.
(d) Assume that the number has the required form. Similarly to (a) and (b′) we obtain

that the complex roots of the polynomial x7 − 3 have the form A(rεk7) for k = 0, 1, 2, . . . , 6.
Therefore, A(r)εs7 = A(rε7) for some s ∈ {1, 2, 3, 4, 5, 6}. Now, by Strong Linear Independence
Lemma 6.5.b we obtain that ak = 0 for all k 6= s. Therefore, 7

√
3 = asr

s, which is a contradiction.

6.3. (a) The roots of the polynomial xq − rq are precisely r, rεq, rε
2
q, . . . , rε

q−1
q . Assume

that xq − rq is reducible over Q. Then the absolute value of a constant term of one of its
irreducible factors is rational and equals to the product of absolute values of k of these roots,
0 < k < q. Therefore, rk ∈ Q. Since q is prime, we get kx + qy = 1 for some integers x, y.
Thus rkx = r(rq)−y, which implies r ∈ Q. This is a contradiction.

(b) Arguing indirectly, take a polynomial A(x) violating the lemma statement of the minimal
possible degree. Let R(x) be the remainder of xq − rq divided by A(x). Then we have degR <
degA, R(r) = 0, and R(x) 6= 0 by (a). This contradicts the choice of A.

(c) The solution is similar to that of 2.3.cd, 2.6.cd, and 6.12, with the use of (b).
(d) First solution. The product

Π = (x− A(x0))(x− A(x1)) . . . (x− A(xq−1))

is a symmetric polynomial in x0, x1, . . . , xq−1. This means that Π can be expressed as a poly-
nomial in x and the elementary symmetric polynomials in x0, x1, . . . , xq−1. The values of these
elementary symmetric polynomials at xk = rεkq (k = 0, 1, . . . , q − 1) are the coefficients of the
polynomial xq − rq, thus they are rational. So Π is the required polynomial.

Second solution. One may also argue exactly as in the second proof of Rationality Lemma 2.7.a,
with 3 being replaced by q (e.g., the range ‘k = 0, 1, 2, 3’ in the first line of the proof should be
replaced by ‘k = 0, 1, . . . , q’).

6.4. (a) Assume that our polynomial is reducible, and consider any its nontrivial unitary
factor. As in proof of Lemma 6.3.a, the constant term of this factor has the form ±rkεmq and
lies in Q[εq]; therefore, rk ∈ Q[εq]. Now, again as in proof of Lemma 6.3.a, we obtain that
r ∈ Q[εq]. This is a contradiction.

(b,c) The proofs are similar to those of 6.3.bc; one may need to implement problem 6.9.

9The irreducibility of the polynomial g(x) = 1 + x + · · · + x6 may be proved, e.g., by applying Eisenstein’s
criterion to the polynomial g(x+1). On the other hand, in ur situation it suffices to prove that g has no divisors
with rational coefficients of degree 1 and 2.
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6.5. (a) Suppose that the polynomial is reducible. Similarly to the proof of Irreducibility
Lemma 6.4.a (over Q[εq]), we establish that r ∈ Q[εq]. Thus r2, r3, . . . , rq−1 ∈ Q[εq].

We claim that in this case r is a root of some polynomial of degree at most q−1; this clearly
contradicts 6.3.a.

For the proof, we argue similarly to the second solution of 2.7.a. Expand the numbers rk

with k = 0, 1, . . . , q − 1 as polynomials in εq:

rk = ak,0 + ak,1εq + · · ·+ ak,q−2ε
q−2
q .

Now it suffices to find numbers λ0, λ1, . . . , λq−1 ∈ Q, not all zeroes, such that all the equations

λ0a0,m + · · ·+ λq−1aq−1,m = 0 for m = 0, 1, . . . , q − 2

are satisfied. This is true by the theorem used in the aforementioned solution of 2.7.a.
(b) Follows from (a).

6.6. (a) Hint: Similar to the proofs of Propositions 2.4, 2.7.b and to the solutions of 6.2.ab′c.
Apply Conjugation Theorem 6.3.c, Rationality Lemma 6.3.d, and Strong Linear Independence
Lemma 6.5.b arriving at a contradiction.

Solution: Assume the contrary; let P be the given polynomial. The case q < degP contra-
dicts Rationality Lemma 6.3.d; so q ≥ degP . Now, by Conjugation Theorem 6.3.c and Strong
Linear Independence Lemma 6.5.b, the polynomial P has pairwise distinct roots xk = A(rεkq)
for k = 0, 1, 2, . . . , q − 1. This is impossible unless q = degP ; this proves the first assertion.
Finally, if q 6= 2, then the relations xk = xq−k 6= xk for k = 1, 2, . . . , q − 1 yield the uniqueness
of the real root.

(b) Answer: No. Set r = 6
√

2; then the number A(r), where A(x) = x3, is a root of x2 − 2.

3. Equations of degree 3 solvable using one radical

3.2. (c) Similarly to the previous parts, the only nontrivial claim is the following one:

Let 0 6= d = a0 + a1r + · · ·+ an−1r
n−1, where a0, . . . , an−1, r

n are rational; then the number
1/d is representable in a required form.

The arguments from part (b) do not apply directly, since the polynomial xn − rn may be
reducible over Q. In order to make them work, it suffices to replace this polynomial by its
irreducible factor having r as a root.

We present also a different proof of the claim. We implement the following result similar to
Rationality Lemma 2.7.a: If a0, . . . , an−1, r

n ∈ Q, then the number d = a0 +a1r+ · · ·+an−1r
n−1

is a (not necessarily unique) root of some polynomial whose degree does not exceed n.
Suppose that d is a root of a polynomial pkd

k + · · ·+ p0; we may assume that p0 6= 0. Then

1

d
=

p0
p0d

=
−p1d− · · · − pkdk

p0d
=
−p1 − · · · − pkdk−1

p0
.

3.4. See [S, §§1.2 and 5.3].

6.7. (
√
Dpq ∈ Q)⇒ (1-solvability). Set r = 3

√
− q

2
+
√
Dpq. By Cardano’s formula (see the

solution of problem 1.6), the unique real root of the equation x3 + px+ q = 0 equals

r − p

3r
= r − p

3r3
· r2 = r − p

3
(
− q

2
+
√
Dpq

) · r2.
(a+ br + cr2)⇒ (

√
Dpq ∈ Q). If r ∈ Q or b = c = 0, then the equation has a rational

root. In the remaining case, denote ε = ε3. Each of the numbers x1, x2, and x3 defined in
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Corollary 2.6.e is a root of our equation. By Strong Linear Independence Lemma 2.6.b′, these
three roots are distinct. Therefore, x1, x2, and x3 are all the roots of our equation. Now, by 6.8
we have

− 108Dpq = (x2 − x3)2(x1 − x3)2(x1 − x2)2

=
(
br(ε− ε2) + cr2(ε2 − ε)

)2(
br(1− ε) + cr2(1− ε2)

)2(
br(1− ε2) + cr2(1− ε)

)2
= ε2(1− ε)6(br − cr2)2

(
br + cr2(1 + ε)

)2(
br(1 + ε) + cr2

)2
.

Since (1 + ε)(1 + ε2) = (−ε)(−ε2) = 1 and (ε− 1)3 = 3ε− 3ε2 = 3
√

3 i, we obtain

− 108Dpq = −27ε2(1 + ε)2(br − cr2)2
(
br(1 + ε2) + cr2

)2(
br(1 + ε) + cr2

)2
= −27(ε+ ε2)2(br − cr2)2

(
b2r2 + br · cr2 + c2r4

)2
= −27

(
(br)3 − (cr2)3

)2
.

This yields the required result.
(1-solvability) ⇒ (a+ br + cr2). If the given polynomial is reducible, then it has a rational

root which has the required form. Otherwise the result follows directly from Proposition 6.10.b.

6.8. Set
M = y20y1 + y21y2 + y22y0 and N = y20y2 + y21y0 + y22y1.

Then (y0 − y1)(y1 − y2)(y0 − y2) = M −N . Therefore,

(y0−y1)2(y1−y2)2(y0−y2)2 = (M+N)2−4MN = (3q)2−4(p3+9q2) = −4p3−27q2 = −108Dpq;

the second equality above follows from the relations y0 +y1 +y2 = 0 (due to the Vieta theorem)
combined with

M +N = (y0 + y1 + y2)(y0y1 + y1y2 + y2y0)− 3y0y1y2 = 0 · p+ 3q = 3q,

MN = (y0y1 + y1y2 + y2y0)
3 + y0y1y2(y0 + y1 + y2)

3 − 6y0y1y2
∑
i 6=j

y2i yj − 9y20y
2
1y

2
2 =

= p3 − q · 03 + 6q(p · 0 + 3q)− 9q2 = p3 + 9q2.

6.9. Similarly to the proof of Calculator theorem 3.2.c.

6.10. (a) The number r is a root of some nonzero polynomial with coefficients in Q[α] (e.g.,
xn − rn. Choose such polynomial f(x) of the minimal possible degree k.

Consider the g.c.d. of xn − rn and f ; it also has r as a root, its coefficients lie in Q[α], and
its degree does not exceed k; this means that this g.c.d. is f itself. So all the complex roots
of f have the form rεmn . Then, by the Vieta theorem, the absolute value of the constant term
of f equals rk for some k ≤ n− 1. Since this constant term is real, we obtain that rk ∈ Q[α].

Now it remains to prove that α ∈ Q[rk]. Since α ∈ Q[r], we have

α = b0(r
k) + rb1(r

k) + . . .+ rk−1bk−1(r
k)

for some polynomials b0, . . . , bk−1 ∈ Q[x]. If not all polynomials b1, . . . , bk−1 are zeroes, then r
is a root of a nonzero polynomial

(b0(r
k)− α) + xb1(r

k) + . . .+ xk−1bk−1(r
k)

whose degree is k, and whose coefficients lie in Q[α] (since α, rk ∈ Q[α]). This contradicts the
choice of f(x). Thus we arrive at b1 = · · · = bk−1 = 0, whence α = b0(r

k) ∈ Q[rk].
(b) By Calculator Theorem 3.2.c, the given polynomial has a root y0 ∈ Q[R] for some R ∈ R

and some positive integer D satisfying RD ∈ Q. By (a), we have Q[y0] = Q[Rk] for some k.
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Denote r = Rk. Since RD ∈ Q, one may choose the minimal positive integer d such that
rd ∈ Q; then r, r2, . . . , rd−1 /∈ Q. Therefore, the polynomial xd − rd is irreducible over Q
(since the constant term of any its nontrivial unitary factor has an irrational absolute value rt,
0 < t < d; cf. 6.3.a).

Finally, the equality Q[y0] = Q[r], combined with the dimension argument similar to that
in the solution of Strong Irreducibility Lemma 6.5.a, yield that any two irreducible (over Q)
polynomials, one with root y0 and the other with root r, have equal degrees. This shows that
n = d, as required.

6.11. (a) Follows from the Cardano formula (or, more exactly, from the theorem in the
solution of problem 1.6.b) in a way similar to that in 3.3.c.

(b) Conjecture. For a polynomial p(x) = x3 + px+ q with p, q ∈ Q, each of the conditions
in Theorem 6.7 is equivalent to the complex 1-solvability of p.

In this conjecture, one may prove almost all implications in a way similar to the proof of
Theorem 6.7. The remaining implication is the following one.

Conjecture. If a polynomial x3 + px + q with p, q ∈ Q is 1-solvable in the complex sense,
then it has a root of the form a+ br + cr2, where a, b, c, r3 ∈ Q and r ∈ C.

(c) Follows from the theorem in the solution of 6.1.b.

4. Equations of degree 4 solvable using one radical

4.2. (4, 1) Answer: An irreducible over Q polynomial of the form x4 +px2 +qx+s is 1-solvable
if and only if

(4) one of its roots has the form a+ br + cr2 + dr3, where a, b, c, d, r4 ∈ Q but r2 /∈ Q.

This condition is equivalent to the following one, formulated by means of the coefficients:

(4i) there exists α ∈ Q such that 2α > p and q2 − 4(p− 2α)(s− α2) = 0, and moreover
(4ii) the number Γ = 16(α2 − s)2 − (α2 − s)(2α + p)2 is a square of a rational number.

Clearly, the conditions (4i) and (4ii) are algorithmically decidable.
The statement (4) on the form of a root of a 1-solvable polynomial is proved in 6.10.b. The

proof that (4) is equivalent to (4i) together with (4ii) is proved in [A, Theorem 2].

4.4. By the theorem from the solution of 6.1, the polynomial x4 + px2 + qx+ s has a root

x+ =
(
A+

√
−2q

A
− 2α− p

)
/2, where A2 = 2α − p and Aq ≤ 0. By the problem condition,

we have 2α − p > 0, so the number A can be obtained using one extraction of a square root.
Moreover, we have −2q

A
− 2α − p ≥ −2α − p > 0. Therefore, the number x+ can be obtained

using two root extractions.

4.5. By the Calculator theorem 3.2.c, the given root x0 of our polynomial f(x) = x4 +
px2 + qx + s has the form x0 = a + br + cr2 + dr3, where a, b, c, d, r4 ∈ Q. We may assume
that r2 /∈ Q (otherwise we may replace r by either

√
|r| or 4

√
|r|). Then, applying Conjugation

theorem 6.12, we obtain that the numbers x1, x2, and x3 (defined in the cited theorem) are
also roots of our polynomial.

Since f is irreducible, the number x0 is irrational, and moreover the numbers x0 and x2
cannot appear to be the two roots of a quadratic trinomial with rational coefficients. This
excludes the case b = d = 0. Therefore, b + dr2 6= 0 due to 2.3.b. Hence the real numbers
x0 and x2 are distinct. Similarly, the numbers x1 and x3 are non-real and distinct. Thus10

f(x) = (x− x0)(x− x1)(x− x2)(x− x3).
10Here is another proof of the fact that f(x) coincides with g(x) = (x−x0)(x−x1)(x−x2)(x−x3). We have

g(x) = [(x− a− cr2)2 − r2(b+ dr2)][(x− a+ cr2)2 + r2(b− dr2)] ∈ Q[r4][x] = Q[x]. (One may also prove that
g has rational coefficients similarly to the second proof of Rationality Lemma 6.3.d.) Now, f(x) is irreducible
and has a common root x0 with g(x), and these two polynomials have the same degrees and leading terms; thus
f(x) = g(x).
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By problem 6.13, the cubic resolution of f(x) has a root α =
x0x2 + x1x3

2
. Since x0 + x1 +

x2 + x3 = 0, we have a = 0. Therefore,

2α = x0x2 + x1x3 =
(
(cr2)2 − (br + dr3)2

)
+
(
(cr2)2 − (bri− dr3i)2

)
= 2c2r4 − r2(b+ dr2)2 + r2(b− dr2)2 = 2c2r4 − 4bdr4 = r4(2c2 − 4bd) ∈ Q.

4.6. An analogue of parts (d) looks as follows.

Theorem. Assume that a polynomial has a root r ∈ R such that r4 ∈ Q but r2 /∈ Q. Then
the numbers ir, −r and −ir are also roots of this polynomial. (Notice here that i = ε4.)

Irreducibility Lemma. Assume that r ∈ R, r4 ∈ Q, but r2 /∈ Q. Then the polynomial x4−r4
is irreducible over Q.

The proof of the lemma is similar to the proof of 6.3.a, since r, r2, r3 /∈ Q. The proof of the
theorem follows the lines of proofs of other Conjugaion Theorems.

Problem 6.12 serves as an analogue of parts (e).

6.12. Let P (x) be the given polynomial. Then, as in Corollary 2.6.e, it suffices to apply
the theorem from the solution of 4.6 to the polynomial P (a+ bx+ cx2 + dx3).

6.13. (a) Applying the Vieta theorem and taking into account that
∑

i xi = 0, one may
check that q2 = (y0y1 + y2y3 − p)((y0y1 + y2y3)

2 − 4s). See details in [A, Statement 2].
(b) Similarly to (a), the three given numbers are roots of the cubic resolution. Moreover,

we have y0y2 + y1y3 − y0y1 − y2y3 = (y0 − y3)(y2 − y1). Thus, if the roots y1, y2, y3, and y4 are
distinct, the obtained roots of the cubic resolution are also distinct, and thus the resolution has
no other roots. The case when our polynomial has a multiple root can also be treated easily.

Alternative solution to both (a) and (b). Applying the Vieta theorem and taking into account
that

∑
i xi = 0, we get(

2α− (y0y1 + y2y3)
)
(2α− (y0y2 + y1y3)

)(
2α− (y0y3 + y1y2)

)
= 8α3 − 4α2

∑
i<j

yiyj + 2α
∑

j<k, i/∈{j,k}

y2i yjyk −
∏

0<j<k, i/∈{0,j,k}

(yiyj + yky`)

= 8α3 − 4pα2 + 2α ·

∑
i

yi ·
∑

|{i,j,k}|=3

yiyjyk − 4y0y1y2y3

−(y0y1y2y3∑
i

y2i +
∑
i<j<k

y2i y
2
j y

2
k

)
= 8α3 − 4pα2 − 8sα− (q2 − 4ps) = −Rf (α),

which yields the desired result.

6.14. (a) Since q2 = 2p(4s − p2), the cubic resolution q2 − 4(2α − p)(α2 − s) has a root
α = −p/2. Since p < 0, we have 2α − p = −2p > 0. Therefore, by 6.1, our polynomial has a
root

−
√

2α− p+

√
2q√

2α− p
− 2α− p = −

√
−2p+

√
2q

4
√
−2p

.

(b) Answer: no. For example, the polynomial x4−12x2−24x−14 from the solution of 4.3.a
has a root 4

√
2+
√

2+ 4
√

8, but the number 2 · (−24) = −48 is not a square of a rational number.

5. Formal expressibility in real radicals

5.4. (d) Theorem. Every symmetric polynomial can be expressed as a polynomial in elemen-
tary symmetric polynomials.

Proof. We prove the assertion by lexicographical induction on the multi-degree of a given
polynomial f(x1, x2, . . . , xn). The base case f = 0 is evident.
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To prove the induction step, let u = axk11 x
k2
2 . . . xknn be the (lexicographically) leading mono-

mial of the polynomial f .
Suppose that ki < ki+1 for some i. Along with u, the polynomial f must contain a monomial

axk11 . . . x
ki+1

i xkii+1 . . . x
kn
n , whose multi-degree is greater than that of u, which is impossible. So

k1 ≥ k2 ≥ · · · ≥ kn .
According to (a), the leading monomial of the polynomial g = aσk1−k21 σk2−k32 . . . σ

kn−1−kn
n−1 σknn

is u. Therefore, the multi-degree of the polynomial f − g is less than the multi-degree of f .
Application of the induction hypothesis to f − g finishes the proof. �

6.15. Set M = x1x3+x3x5+x5x7+x7x9+x9x1 and N = x2x4+x4x6+x6x8+x8x10+x10x2.
Now one may proceed as in 5.5.b.

6.16. (a) Denote g(x, y, z) := f(y, z, x). Since f q is cyclically symmetric, we have f q = gq.
If q is odd, we obtain f = g, so f is cyclically symmetric. Otherwise, if q is even, then f = ±q,
which yields either f = g (and thus the result holds) or f = −g. In the latter case we have

f(x, y, z) = −f(y, z, x) = f(z, x, y) = −f(x, y, z).

Thus f = 0, and f is cyclically symmetric again..
(b) Use the result of 5.4.a.

(c) f 2 + fg + g2 =

(
f + g

2

)2

+

(√
3

2
g

)2

= (f + ε3g)(f + ε23g).

6.17. (a) Take

s = 1, k1 = 2, p0(y0, y1) = y21 − 4y0, p1(y0, y1, z1) =
z1 − y1

2
and f1 = 2x+ a1.

Check that f 2
1 = p0(a0, a1) and x = p1(a0, a1, f1).
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