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Figure 2: Local changes during mutation.

The lemma can be proven by rotating a line about point
starting in position until it coincides with again. The

halving edges incident to are encountered in alternation on
the large and small side of , starting and ending on the large
side.

In fact, the lemma completely characterizes the graph
of halving edges of a point set. Simple implications of the
lemma which we have mentioned before are that the num-
ber of halving edges incident to a point in is always odd,
and that there is exactly one halving edge incident to each
extreme point of .

Mutations while moving. Recall from the introduction,
that if we start moving the points in , the graph of halv-
ing edges will not change unless a triple of points
becomes collinear and changes its orientation. Even then,
the graph of halving edges will not change except for edges
on . Following the terminology of oriented matroids
(cf. [BLSWZ]), we call such a change of orientation a muta-
tion.

Let us investigate such a mutation on three points
. We assume that this is the only mutation that oc-

curred (i.e., there is no other simultaneous mutation), and
that the points stayed disjoint when they passed though
collinearity. First we consider only the case when is
a halving edge before mutation, and that lies on the seg-
ment connecting and at the moment of collinearity (see
Figure 2). Hence, and are not halving edges
before mutation. After mutation, is not halving, but

and are. That is, the number of halving edges
increased by one, and no degree in the graph of halving edges
changed except for point , whose degree increased by 2.

What happened to crossings of halving edges? If we ig-
nore edges incident to , then nothing changes. Crossings
with the edge are replaced by crossings with or

after mutation. As for the edges incident to , let
be a line through parallel to the segment connecting and
. The halfplane of containing is the large side of
, before and after mutation. If is the number of halving
edges incident to emanating into the large side of before
mutation, then these edges were responsible for crossings
with . These crossings disappear after mutation. No
new crossings appear.

Let and denote the number of halving edges

incident to before and after mutation, respectively. Note
that and . Let and
denote the number of crossings of halving edges before

and after mutation, respectively. We have , and
so

which proves that the validity of Identity (1) is not affected
by the mutation, since no degree other than changes
during mutation.

Now recall that we assumed that was a halving
edge before mutation. However, the mutation described, and
its inverse, are the only types of mutations affecting the graph
of halving edges and its crossings.

Proof of Theorem 1. First observe that for all even
there is a set of points which satisfies Identity (1).
The vertices of a regular -gon, or the vertices of a regu-
lar -gon together with its center are easy examples.
Now it remains to use the fact that any two sets of points in
general position can be continuously transformed into each
other in such a way that the points remain pairwise distinct,
they never have more than one triple of points collinear, and
such a collinearity occurs only finitely often.

Other identities. A simple algebraic manipulation al-
lows us to rewrite Identity (1) as

Let denote the number of -edges1 emanating from
point (which equals the number of incoming -edges). Let
denote the number of crossings of -edges, and for ,

let denote the number of crossings between -edges and
-edges. Then (reading as 0) we have

for , and

for . (The latter identity allows im-
provements of previous bounds in [We] on , for

.) Proofs follow from an analysis of muta-
tions as in the proof given here, and will be given in the full
version of the paper.

1Recall, that we use “ -edges” for -facets in the plane.


