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1 Preliminary talks

What is common in Go, Chess, Checkers, and Gomoku? They all are finite positional games with perfect
information and without positions of chance. The last means that ”all players know everything” and
hence, they know the same. This is not the case with cards or domino. A player does (or at least
supposed to) not see the opponents’ cards. In Backgammon, there are positions of chance, when the
dices are tossed. Word ”positional” means that moves lead between positions. Word ”finite” means that
there are finitely many positions.

Any configuration of stones is a position in Go. There are very (but finitely) many of them. A play
starts with some initial position and terminates in a final one (which is called a terminal). For example,
a mate or a stale mate are terminals in Chess. It is important to notice that positions can be repeated
and a play may cycle.

All games considered above are zero-sum two-person games. The word ”zero-sum” means that the
winning of one is the losing of the other. And if one gets some number of points then the other loses
the same number. A pair of strategies is optimal if they form an equilibrium, that is, the corresponding
result can be improved by neither of the players.

Yet, everything becomes much more complicated when there are more than two players (or two but
the game is not zero-sum). It may happen that each player can guarantee only a very poor result, because
it is difficult to fight against the coalition of all other players.

An exercise: There are 10 matches, 3 players take them in a cyclic order, 1,2,3,4, or 5 for one move.
One that take the last one should do the dishes. Prove that any two can always force the third one to
do the dishes.

Let doing the dishes costs 2, while the winners get +1 each (that is, their cost is (-1) for each). The
game is zero-sum. We want to define an equilibrium in this case too, that is, to suggest 3 strategies such
that if one player changes his strategy, he cannot profit whenever two opponents keep their old strategies.
This concept was introduced by John Nash in 1950 and it is called Nash equilibrium.

An exercise: Suggest some Nash equilibria in the considered game.
Our main problem is to understand which games are Nash-solvable (that is, always have Nash equi-

libria) and which may have none.
First, let us demonstrate that any acyclic case (in which no position can be repeated) is Nash-solvable.
Let us assign to a game a directed graph (digraph), whose vertices are the positions and the directed

edges (arcs) are moves. The positions with no moves are called terminals. Let us assign to each terminal
and player a number which this player gets in this terminal. For any non-terminal position we define a
player who makes a move in it. Let all moves from a position v lead to terminals. Then the corresponding
player chooses a best his move, say to a terminal v′. Then we transfer to v all points defined for v′. Now v
”becomes terminal”, etc. This procedure is called Backward Induction. It defines strategies of all players.

An exercise: Prove that these strategies form a Nash equilibrium for any acyclic games.
Let us define the concept of a strategy more accurately. A stationary strategy of a player is a rule

choosing his move in each his position. For example in the above ”match-game” the greedy strategy
suggests to take the maximum number of matches each time. Let us note that a stationary strategy does
not depend on history, that is, on the preceding positions or moves. In particular, the play must cycle
whenever a position appears twice. In Chess this means a draw. However, cycles may have some other
costs, for example, all players lose.

Up to now, we considered only the terminal cost functions, that is, the result depended only on the
terminal (or cycle). More generally, each player may pay for each (not only for his own) move and the
final result is defined as the sum of all these local costs.

An exercise: There are 5 matches. 3 players take them in a cyclic order. One who takes the last
match gets a bonus: 3 matches. The result of a player is the number of collected matches. Construct the
graph and find an equilibrium.
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If a play cycles then we assume that the cycle is passed infinitely many times. In other words, the
cost of such a play is either + or −∞ For convenience we will assume that it is +∞ whenever the sum
of all local costs ≥ 0.

2 A mini-survey “before accurate definitions”

We will consider the following question:
Which positional games (with perfect information and without moves of chance) have Nash equilibria
(in pure stationary strategies)? In some cases, the answer is well known. We start with a mini-survey
postponing the precise definitions till the next section. Nash equilibria (NE) exist for the following classes
of games:

A. Acyclic games, in which no position can appear twice. In this case, NE always exist. Yet, already
in Chess, or even Go, positions can be repeated.

B. Zero-sum two-person games. Both Go and Chess are included. Yet, what if the conflict is not
antagonistic? or there are more than two participants?

C. NE exist if players’ moves may depend on the preceding moves.
Yet, we will restrict ourselves (and the players) to the pure stationary strategies. In other words, a move
in the present position depends only on it, not on preceding positions or moves. Furthermore, this move is
chosen deterministically, without any randomization. For example, Backgammon will not be considered.

Let us note, however, that in all of the above cases, A,B, and C, a NE exists even if we allow positions
of chance. It is also known that NE may fail to exist in games with imperfect information (like card
games or Domino). Yet, we will not consider (and will not even define) them.

Let us summarize:
We will restrict ourselves to games with perfect information, without random moves, and to pure sta-
tionary strategies. Yet, the number of players may be greater than two and, even a two-person game,
may be not zero-sum.

Somewhat surprisingly, not much is known about the considered games. There are several solution-
concepts, among which the NE is certainly most popular. (It will be defined in the next section.)
Although, five Nobel Prizes in Economics were granted for works on NE, but in my opinion, the “simplest”
and most challenging related mathematical problems are open yet.

Here we will consider two such problems-conjectures. By computers, they are verified for sufficiently
(but not too) large examples. So, I hope for affirmative solutions but a counterexample would not be too
surprising to me, either.

These conjectures are verified in some special cases, which will serve as exercises. In contrast, some
other special cases are difficult, or even open.

3 Main definitions

They all are pretty natural but still so much formalities may scare some.
In this case, I recommend to skip this section during the first reading and use it as a dictionary, only
when necessary.

Graphs, positions, and moves. Given a finite directed graph (digraph) G = (V,E), a vertex
v ∈ V is interpreted as a position, while a directed edge e = (v, v′) is a move from the position v in the
corresponding game.

The positions VT ⊂ V without any moves are called terminal.
Let us choose also an initial position v0 ∈ V \ VT .

Players. Let us assign to each non-terminal position v ∈ V \ V a player i ∈ I = {1, . . . , n} who
will make a move in v, say that v is controlled by i, and write i = φ(v). In other words, the mapping
φ : V \ VT → I distributes the non-terminal positions among players.

Triplet {G,φ, v0} is called a positional structure.

Strategies and situations. A strategy xi of player i ∈ I is a plan choosing a move e = (v, v′) in
every position v ∈ φ−1(i) controlled by i. In other words, the mapping xi assigns a move e = (v, v′) from
v to v′ for each position v ∈ φ−1(i).
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These are the so-called pure stationary strategies. As we already mentioned, we will not consider, nor
even define, any others.

Let each player i choose a strategy xi. The obtained n-tuple x = (x1, . . . , xn) will be called a strategy
profile or a situation.

Plays. Eeach situation x uniquely defines a play p(x), since each player i knows what to do in every
position v ∈ φ−1(i) (to move according to xi).

The play p(x) begins in v0 and either it terminates an a v ∈ VT or “cycles”, that is, passes a directed
cycle C infinitely many times. (Let us notice that p(x) cannot leave C, since all strategies of x are
stationary.)

Thus, we obtain a mapping g : X → P that assigns a play p = p(x) ∈ P to every situation x ∈ X.
Such a mapping is called a game form.

Local and effective cost functions. Each player i ∈ I pays the value c(i, e) ∈ R for each (not only
for his own) move e ∈ E. This real number is the local cost. (Of course, if c(i, e) < 0 then i gets |c(i, e)|
rather than pays it.)

A positional structure and a local cost function define a positional game.
The effective cost c(i, p) of a play p = p(x) for a player i ∈ I is defined as follows. If p ends in a

terminal position v ∈ V then c(i, p) =
∑
∈p c(i, ), that is, the cost is additive and is equal to the sum of

the costs of all moves of p for i.
If p cycles on C, we have to compute the cost c(i, C) =

∑
∈C c(i, e) of C first. If c(i, C) ≥ 0 then

c(i, p) =∞ and c(i, p) = −∞ when c(i, C) < 0.
Such definition is natural. Indeed, play p repeats C infinitely and the local costs are summed up.

Yet, when C is a “zero-cycle” for i, that is, c(i, C) = 0, we still set c(i, p) = ∞. This is just a helpful
convention.

A game form g : X → P together with an effective cost function c : I × P → R define a game (g, c)
in the normal form.

Naturally, each player i ∈ I is trying to minimize his effective cost c(i, p).
In particular, all players should avoid non-negative cycles. We will see, however, that it might be not
that easy to do.

Terminal moves, costs, and games. A move e = (v, v′) is called terminal if v′ ∈ VT is a terminal
position. Let us notice that a terminal move cannot belong to a directed cycle. A local cost function c
(and the obtained game) are called terminal if c(i, e) ≡ 0 for each player i and every non-terminal move
e. In this case, the effective cost of a terminal play p depends only on its last move and if p cycles then
its cost is + or −∞, by definition.

Zero-sum games. We say that a local cost function c (as well as the corresponding game) are zero-
sum if

∑
i∈I c(i, e) = 0 for every move e ∈ E. Zero-sum two-person, n = 2, games play very important

role.
Any n-person game can be easily converted into a zero-sum (n+ 1)-person game. Let us introduce a

new (n+ 1)st player who will be a dummy (in control of no positions) and define his local cost function
c(n+ 1, e) = −

∑n
i=1 c(i, e).

Games in normal form; general definition. Let I = {1, . . . , n} be a set of players, i be a finite
set of strategies of i ∈ I, and X = X1 × . . .×Xn be the direct product of these n sets, that is, X is the
set of situations.

Furthermore, let P denote an arbitrary set of outcomes (plays, in our case). An arbitrary mapping
g : X → P is called a game form.

Finally, given an arbitrary cost function c : I × P → R, its real values c(i, p) show how much player
i ∈ I must pay for the play p ∈ P .

Finally, the pair (g, c) is called a game in normal form.

Nash equilibria and saddle points.
A situation x = (x1, . . . , xn) ∈ X1 × . . . × Xn = X is called a Nash equilibrium (NE), if no player

i ∈ I can profit by replacing his strategy (xi by x′i) provided all other players keep their old strategies.
Formally, we can write this as follows:

c(i, g(x)) ≤ c(i, g(x′)) for every player i ∈ I and for each situation x′ ∈ X such that all components
(strategies) of x′ are the same as in x, except for, maybe, the ith one; that is, only x′i may differ from xi,
while x′j = xj for all j ∈ I \ {i}.
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This concept was introduced by John Nash in 1950. For the two-person zero-sum games, NE are
saddle points, which concept is about 200 years older.

In contrast to saddle points, the concept of NE is vulnerable for criticism. Indeed, two players might
change simultaneously their strategies and profit both. Moreover, sometimes all n players may do the
same. (In other words, NE are not necessarily Pareto-optimal.) Furthermore, NE (in pure strategies)
may fail to exist (as well as the saddle points, yet). Then, NE may be numerous, moreover NE costs
might be not unique, either. However, we are here not for criticizing but for studying the concept of NE.
(Remember also about five Nobel Prizes :-)

Uniform Nash equilibria. A situation x ∈ X is called a uniform NE , if it is a NE not only with
respect to the given initial position v0 but with respect to any other initial position v′0 ∈ V , as well.

4 Conjectures and problems

We are interested in the NE existence theorems, or in other words in Nash-solvability (NS), of the
positional games defined above.

The number of points in parentheses measure the complexity of the problems.

Conjecture 1 (500). Prove or disprove that any two-person positional game is Nash-solvable (NS).

Problem 1 (10). Show that, proving Conjecture 1, one can assume, without loss of generality, that
the considered game contains no “zero-cycles”; more precisely,

∑
e∈C c(i, e) 6= 0 for every directed cycle

C and player i ∈ I = {1, 2}.
Let us recall that the effective cost of any cycling play is either + or −∞.

This is a brand new conjecture. It was verified by a recent computer code written by Vladimir
Oudalov for many digraphs with 10-18 vertices.

Problem 2 (25). Give an example showing that Conjecture 1 cannot be extended for the three-person
case, n = 3.

The conjecture does hold for the two-person zero-sum case but all known proofs are difficult.
Moreover, in this case we can introduce a finite effective cost function for all plays resulting in zero-

cycles such that a saddle point always exists. (Let us recall that we have set c(i, p) = +∞ in the
considered case.)

Problem 3 (70). Show that the following “natural redefinings” fail:
c(i, p) = 0 or c(i, p) =

∑
e∈p c(i, e). In both cases there may be no saddle points. Give examples and try

to find the “right” definition.

Conjecture 2 (500). Prove (or disprove) that an n-person positional game is Nash-solvable whenever
all its local costs are non-negative.

Problem 4 (5). Show that proving Conjecture 2, without loss of generality, one can restrict himself
to the strictly positive costs.

This conjecture remains unproved even in the following very special cases:

Conjecture 2a (300). Does Conjecture 2 hold for the games with a terminal cost function? (In this
case the effective cost of every cycling play is +∞.)

Conjecture 2b (400). The same question but now we do not assume that every cycling play is the
worst outcome for all n players. Instead, we assume that all such plays form the same outcome but each
player can rank this cyclic and all terminal outcomes arbitrarily. Does NS hold?

Conjecture 2c (200). Does conjecture 2 hold for two-person games?

In other words, here we unite the conditions of Conjectures 1 and 2.

Problem 5 (100). Prove that Conjecture 2 holds, yet, for the case of two players and terminal cost
functions.

This result can be derived from my old theorem of 1975. By definition, a general n-person game form
g : X1 × . . . × Xn → P is NS when the corresponding game (g, c) has at least one NE for every cost
function c : I × P → R.

Here c(i, p) is the cost of the outcome p ∈ P for the player i ∈ I.
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For the two-person case, I = {1, 2}, let us introduce the next two relaxations of the above condition.
A two-person game form g will be called:

zero-sum solvable if it is solvable in the class of the zero-sum games;

±1 solvable if it is solvable in the class of the zero-sum games whose cost function takes the values
+1 and −1 only.

Problem 5a (100). Prove that all three above properties (solvability, zero-sum solvability, and ±1
solvability) of the two-person game forms are equivalent.

The equivalence of the last two properties is not difficult to show and I proved it a bit earlier, in 1973.
Yet, even earlier this was demonstrated by Jack Edmonds and Delbert Ray Fulkerson, in their paper
“Bottleneck extrema”, Journal of Combinatorial Theory 8:3 (1970) 299–306.

Unfortunately, the statement of Problem 5a cannot be extended to the three-person case, already.
More precisely, let us assign to each n-person game form n two-person game forms in which i is playing
against the complementary coalition I \ {i}, for all n players i ∈ I.

Problem 5b (50). Construct a three-person game form that is not NS, while all three corresponding
two-person game forms are NS.

Problem 5c (20). Construct an “inverse” example: a three-person NS game form such that all three
corresponding two-person game forms are not NS.

Problem 6 (20). Reduce problem 4 to Problem 5.

Problem 7 (15). Prove Nash-solvability for the games on acyclic digraphs.
(A digraph G is acyclic if it has no directed cycles.)
Hint: Make use of the dynamic programming (which is called “backward induction” in game theory.)

This result was obtained by Harold Kuhn in 1951 and David Gale in 1953, soon after Nash coined his
concept of equilibrium.

Problem 7a (20). Prove that NS holds for the acyclic case, even in the presence of positions of
chance (for each of which a probabilistic distribution among possible moves is given).

Of course, solution of the last two problems costs 20 points rather than 35.

Problem 8 (40). Prove that a NE (that is, a saddle point) always exists in the zero-sum two-person
positional games.

In particular, for Chess and Go. This theorem belongs to Ernst Zermelo:
“On an Application of Set Theory to the Theory of the Game of Chess”,
Proceedings of the Fifth Congress of Mathematicians at Cambridge, 1912.

Let us note that this result also can be extended to allow positions of chance. Yet, this direction
would lead us too far to the stochastic game theory. So, we will postpone it for the future.

Problem 9 (10). Let us agree to finish the game as soon as a position is repeated, the obtained
cycling play being the outcome. Then, any finite digraph is reduced to a tree (that have no cycles at all,
directed or not). Then, why Conjectures 1 and 2 do not result from Problem 7?

Problem 10 (15). Give an example of a terminal two-person game that has a unique directed cycle
and no uniform NE. (Here, we do not assume that the cycle is the worst outcome for both players. Each
of them may rank it and the terminals arbitrarily.)

Problem 11 (100). Give an example of a terminal two-person game that has a unique directed cycle
and no uniform NE, now assuming that the cycle is the worst outcome for both players.

Problem 12 (25). Provide a similar three-person example with a unique directed cycle that is the
worst outcome for all players and without uniform NE.

Such examples were obtained just recently: in 2003 for Problem 11 and in 2008 for Problem 12. Of
course, in all three cases (of Problems 10, 11, and 12), a NE exists with respect to any fixed initial
position. Otherwise, Conjecture 2 would be disproved.
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