
Fair cake division

Selected solutions

If you have any ideas on this project, please do not hesitate to contact us by the e-mail:

Konstantin Knop kostyaknop@gmail.com, Ilya Bogdanov ilya.i.bogdanov@gmail.com

The presented solutions are arranged as follows. In section �Some sequences� we �nd the values

of f on some sequences of pairs (m,n); notice that plenty of them also follow from more general

results from the next sections. Section �Serial results� contains the solutions (or their outlines) for

problems 3.4�3.8 (with problem 4.1 as a useful lemma) and bound 3.13. In section �Nonequal cakes�

we extend our methods; it allows us to approach to problems 3.9 and 3.10 (it is recommended to

read section on serial results before). Finally, in section �General algorithm� we describe on concrete

examples the ideas of a general algorithm of solving Megaproblem (it involves some ideas from the

previous two sections).

We start with the solution of problem 1.6.

1.6. a) Answer. m+ n− gcd(m,n).
To construct an example, consider a segment of length m. Divide it by red points into m equal

segments, and by blue points into n equal segments (some points will be multicolored). The segments

with the red endpoints represent the cakes. We cut the cakes by all the blue endpoints. We claim

that a desired division is obtained. Obviously, these pieces may be distributed among the people: it

su�ces to give to each person pieces between some neighboring blue points. There are m + 1 red

points, n + 1 blue points, and gcd(m,n) + 1 multicolored points. So the total number of points is

m+ n− gcd(m,n) + 1 and we have the required number of pieces.

We are left to show that the number of pieces should be at least m + n − gcd(m,n). Denote

d = gcd(m,n), n = dn′, m = dm′. Consider a bipartite graph with m red vertices and n blue

vertices, corresponding to cakes and people. Each edge corresponds to a piece, and it connects the

person getting the piece with the cake it is taken from. Consider a connected component of this

graph, let it have r red vertices and b blue vertices. Then b persons eat together r cakes, which

means that b · m
n

= r. So r
b
= m′

n′ and hence m′
∣∣ r. So, the number of connected components is at

most m
m′ = d. On the other hand, in each component the number of edges is at least the number of

vertices decreased by 1. So the total number of edges in the graph (which is the number of pieces)

is at least m+ n− d.

b) The solution is left to the reader.

Some sequences

Here we present the solutions for some problems from section 2. Many of them follow also from

more general results from section 3; nevertheless, we have put them here to show more concrete

constructions.

General remark. Since the case m
∣∣ n is trivial, further we always assume that m 6

∣∣ n.
2.2. By 3.2b) it follows that f(m, 2m − 1) ≤ m+1

6m−3 . Example of decomposition of cakes of weights

6m− 3:

2×
(
3 · (2m− 1)

)
+
(
2 · (m+1)+(2m− 4)+(2m− 1)

)
+2×

(
2 · (m+1)+(2m− 2)+(2m− 3)

)
+(

(m+ 1 + i) + (m+ 3 + i) + (2m− 4− i) + (2m− 3− i)
)
i=1,...,(m−5)
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2.3. b) Answer. 4
n
if 4

∣∣ n; 2
n
if n = 4k + 2; 4

n
− 2

n−1 if n is odd.

If 4
∣∣ n then the answer f(4, n) = 4

n
is trivial. If n = 4l + 2 is even then f(4, 4l + 2) = 1

2l+1
by 3.1.

Let n = 2k+1 is odd. By 3.3a) we may assume that every person gets exactly two pieces. So we

have 4k + 2 pieces, and by the pigeonhole principle there exists a cake with not more than k pieces.

So there is a piece not less than 1
k
, and its complement (at a person) is at most 4

n
− 1

k
= 4

n
− 2

n−1 ;

hence f(4, n) ≤ 4
n
− 2

n−1 . An example for odd n:

2×
(
n− 1

2
· 2

n− 1

)
+ 2×

(
n− 1

2
·
(
4

n
− 2

n− 1

)
+

2

n

)
=

= (n− 1)×
(

2

n− 1
+

(
4

n
− 2

n− 1

))
+

(
2 · 2

n

)
= n · 4

n
.

c) Answer. 5
n
if n

... 5;
1

d2n/5e if n = 5k + 1 ≥ 16 or n = 5k + 3; 5
n
− 1
b2n/5c if n = 5k + 4 or

n = 5k + 2 ≥ 12; f(5, 11) = 13
66
. The other examples follow from the previous problems.

2.4. Answer. 1
5
for m ≥ 6 and m = 2; the other answers follow from the previous problems:

f(1, 3) = 1
3
, f(3, 7) = 5

28
, f(4, 9) = 7

36
, f(5, 11) = 13

66
.

2.5. Answer. 1
4
for k ≥ 1. The bound follows from 3.4 a). Example for cake weight 12k + 8:

1×
(
4 · (3k + 2)

)
+ 2×

(
(4k + 2) + (5k + 4− 2i) + (3k + 2 + 2i)

)
i=1,...,k

=

= k×
(
2 ·(4k+2)

)
+2×

(
(3k+2)+(5k+2)

)
+2×

(
(3k+4)+5k

)
+ · · ·+2×

(
(5k+2)+(3k+2)

)
.

Note that the problem follows from 3.4b).

2.6. Answer. 2k+1
2(4k+1)

. The bound follows from 3.2 a). Example for cake weight 8k + 2:

(k + 1)×
(
2 · (4k + 1)

)
+ 2×

(
(2k + 1) + (2k + i) + (4k + 1− i)

)
i=1,...,k

=

= (2k+2)×
(
(2k+1)+ (4k+1)

)
+2×

(
(4k+1− i) + (2k+1+ i)

)
i=1,...,(k−1)

+
(
2 · (3k+1)

)
.

2.7. Answer. 1
4
. Bound follows from 3.4a). Example for cake with weight 32k + 12.

(5k + 2)× (32k + 12) =

= k×
(
4·(8k+3)

)
+2×

(
2·(10k+4)+(12k+4)

)
+
(
(12k+5)+(8k+3+i)+(12k+4−i)

)
i=1,...,4k

.

Note that the existence of example follows from 3.4b).

2.8. Answer. 6k−1
3(9k−2) . The bound follows from 3.2b). Example with cake weights 27k − 6 and

portions of people 15k − 3:

2k ×
(
3 · (9k − 2)

)
+
(
(6k − 1) + (6k − 1) + (6k − 2 + i) + (9k − 2− i)

)
i=1,...,(3k−1)

=

= 6k ×
(
(6k − 1) + (9k − 2)

)
+
(
(6k − 1 + i) + (9k − 2− i)

)
i=1,...,3k−2

2.9. Answer. 18k−4
63k−15 . The bound follows from the lemma.

Lemma. If 4
5
< m

n
< 1, then f(m,n) ≤ 2 · m

n
− 4

3
.
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Proof. Suppose the contrary. It is easy to check that 2 · m
n
− 4

3
≥ m

3n
and 2 · m

n
− 4

3
≥ 1

4
, so all the

cakes contain two or three pieces and all people have two pieces. The number of two-piece cakes is

3m− 2n, the number of three-piece cakes is 2n− 2m. Two cases are possible.

1) Assume that some person gets both pieces from two-piece cakes. Then the remaining two

pieces from these two cakes weigh in total 2 − m
n
, and one of pieces is at least 1 − m

2n
. Hence the

completing piece is at most
m

n
−
(
1− m

2n

)
< 2 · m

n
− 4

3
.

2) Every piece of two-piece cake is completed by a piece of a three-piece cake. Let x be the

minimal piece weight. Then m
n
− x is the maximal weight. Let A be some piece of a two-piece cake;

then A ≥ 1 − m
n
+ x. Hence the completing piece is m

n
− A ≤ 2m

n
− 1 − x. From m

n
> 4

5
it follows

that there are more two-piece cakes than three-piece ones. So there is a three-piece cake, all pieces of

which are complementary to pieces of two-piece cakes. Hence all three pieces are at most 2m
n
−1−x

and

3

(
2 · m

n
− 1− x

)
≤ 1⇔ x ≤ 2 · m

n
− 4

3
.

Example. Cake weight is 63k−15, portion of a person is 51k−12, the minimal weight is 18k−4.

(17k − 4)× (63k − 15) = 2k ×
(
3 · (21k − 5)

)
+ 6k ×

(
(33k − 8) + (30k − 7)

)
+

+
(
(33k−10−i)+(30k−7+i)

)
i=1,...,3k−2

+2×
(
(18k−3+i)+(27k−6−i)+(18k−4)

)
i=1,...,3k−1

=

= 6k ×
(
(21k − 5) + (30k − 7)

)
+ 6k ×

(
(33k − 8) + (18k − 4)

)
+

2×
(
(18k − 4 + i) + (33k − 8− i)

)
i=1,...,3k−2

+
(
(24k − 6 + i) + (27k − 6− i)

)
i=1,...,3k−1

=

= (21k − 5)× (51k − 12).

Serial results

First, we present an estimate analogous to the Theorem on One Third.

3.13. a) If n = 2m, then f(m, 2m) = 1
2
, so we assume m

n
< 1

2 . Let 8n be the weight of every cake,

then each person receives 8m.

Consider the segment of length 8nm and divide it by red points into m equal segments (cakes).

We will cut o� the pieces consequently from the left end of the remaining segment. Cut o� several

pieces of 4m until the remainder will be between 6m and 10m. Next, we divide the remaining part

into two equal pieces of length between 3m and 5m. We complete both of these two pieces to 8m by

two pieces from the next cake. So we use at most 10m from the next cake, and the remainder is at

least 8n − 10m ≥ 6m. Thus we may continue cutting until the last cake. Since we have combined

extracted pieces to pairs of weight 8m, and the total segment equals to 8mn, then in the last cake

will be ended by two pieces of 4m. The distribution of pieces among people is also constructed.

Next, we present some exact values for several intervals. We start with problem 4.1, which

happens to be very helpful.

4.1. a), b) Answer. m
n
∈
[

1
k−1 , 1

)
∪
{

v
(k−1)v+1

}
v=1,2,...

.

Firstly, we present an example showing that the answer �ts. We act as in Theorem on One

Third. Consider a segment of length m. Divide it by red points into m equal segments, and by blue

points into n equal segments (some points will be multicolored). The obtained segments with the

red endpoints represent the cakes. Now we cut the cakes by all the blue endpoints.

We claim that a desired division is obtained. Obviously, these pieces may be distributed among

the people: it su�ces to give to each person pieces between some neighboring blue points. Moreover,

each person gets no more than two pieces since each such segment may contain at most one red

point. We are left to show that each cake is divided into at most k parts.
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If m
n

> 1
k−1 , then each cake contains at most k − 2 whole portions and at most two pieces

less than m
n

� thus at most k pieces at all. For m
n

= 1
k−1 the claim is obvious. Now assume that

m
n

= v
(k−1)v+1

. Consider now k consecutive blue points; the distance between the �rst and the last

of them is
(k−1)v

(k−1)v+1
, and their coordinates are the fractions with denominator (k − 1)v + 1. This

implies that a cake can contain all these k points only if one of them is its endpoint. This means

exactly that a cake is cut into no more than k pieces. The example is justi�ed.

We are left to prove that in other cases the desired division is impossible. Let us call a person

angry if he gets two pieces. Let us construct a graph having cakes as vertices, with each edge

corresponding to an angry person and connecting two cakes he gets his pieces from. Consider any

connected component of this graph; let v and e be the numbers of its vertices and edges, respectively.

Then e ≥ v − 1.
These v cakes contain at most kv pieces, 2e of which belong to angry people. Since there are no

edges from our component outside it, these pieces can be rearranged into whole portions (namely, e
portions of two pieces each and, say, t of portions of one piece). Then t ≤ kv− 2e. Next, comparing

the total weight at v cakes and e+ t people, we get n
m

= e+t
v
≤ kv−e

v
= k− e

v . If e ≥ v, then we get

n
m
≤ k − 1, otherwise e = v − 1, and we have n

m
=

v(k−1)+1
v

, as desired.

Important remark. Had we omitted the condition m < n, the answer would expand a bit.

Surely it will include 1; now assume that m > n. In this case, all people are angry since a person's

portion is greater than a cake. Now, each connected component of a graph corresponds to the

division of v cakes between e people, hence 1 < m
n

= v
e
which may happen only if e = v − 1. For

such values an example can be constructed in the same way; hence the answer becomes

m

n
∈
[

1

k − 1
, 1

⌋
∪
{

v

(k − 1)v + 1

}
v=1,2,...

∪
{
e+ 1

e

}
e=1,2,...

.

c) Answer. m
n
∈
[

1
k−1 ,

2
k−1

⌋
∪
{

v
(k−1)v+1

}
v=1,2,...

.

The solution is left to the reader.

3.4. a) As usual, we may assume that each person receives at least two pieces. Then the total number

of pieces is at least 2n > 3m. Hence some cake contains at least four pieces, one of which should not

exceed 1
4
.

b) Answer. m
n
∈
[
5
8
, 2
3

)
∪
{
5k+2
8k+4

}
k=1,2,...

.

Suppose that f(m,n) = 1
4
; then f(m,n) > m

3n
, so we may assume that each person gets exactly

two pieces. Next, each piece is at least 1
4
and at most

d =
m

n
− 1

4

(otherwise the other piece at the person having our one is less than 1
4
). Hence each cake contains

at least three pieces (otherwise there exists a piece of at least 1
2
> d) as well as at most 4 pieces

(otherwise there exists a piece not exceeding 1
5
). Thus, we have fat cakes with 4 pieces each and

usual cakes with 3 pieces each, and the numbers of fat and usual cakes are

f = 2n− 3m and u = 4m− 2n

respectively. Since u ≥ 0, we obtain m
n

> 1
2
.

Next, each fat cake should be split into equal parts, these parts belong to 4f people, and the

second piece at each such person weighs d. All the remaining people get both their pieces from the

usual cakes; let us call these people usual. Then there are

s = n− 4f = 12m− 7n
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usual people.

Now we will consider some auxiliary decomposition of negative �cakes�; it corresponds to the

division of the usual cakes and people. Let us subtract 1
4
from each piece of a fat cake, and d from

each piece of a usual cake. Let us forget for a while about zero pieces. Then in a new decomposition

all non-usual people and all fat cakes vanish (and we forget about them too), each usual �cake� now

contains not more than three negative �pieces� of the same total weight, while each usual person

gets at most two nonpositive �pieces� of the same total weight. So, taking the opposites of all the

obtained weights, we arrive to the situation of 4.1a) (without a condition m < n).
Conversely, from the division of these de�ciencies it is easy to pass to the distribution of the

original cakes. Let us cut the real cakes into three pieces with the corresponding de�ciencies (if a

new �cake� is divided into one or two parts, then the remaining pieces should have zero de�ciencies,

i.e. they should be equal to d). For the people, if someone had got two de�ciencies, then we give

him the two corresponding pieces; otherwise he gets one corresponding piece together with the piece

of zero de�ciency. Finally, all the remaining pieces with zero de�ciency are paired with the pieces

from the fat cakes.

Thus, we obtain that the desired decomposition exists if and only if u
s
= 4m−2n

12m−7n ∈
[
1
2
, 1
)
∪{

k
2k+1

}
∪
{
k+1
k

}
∪{∞} (see the Remark after 4.1b); we have also added the degenerate case s = 0).

With the use of m
n

< 2
3
, this leads to the condition m

n
∈
[
5
8
, 2
3

)
∪
{
5k+2
8k+4

}
k=1,2,...

.

Remark. In the further solutions following the same scheme we will omit repeating details,

leaving them to the reader.

3.5. Answer. m
n
∈
[
2k−1
k2−1 ,

2
k

)
∪
{

d(2k−1)+2
d(k2−1)+k+1

}
d=1,2,...

.

The solution is analogous to 3.4b).

3.6. a) By 3.2b), f(m,n) ≤ m
n
− 1

3
. The converse inequality is proved in part b).

b) Answer. m
n
∈
(
1
2
, 5
9

]
∪
{
5k+2
9k+3

}
k=0,1,2,...

.

First, let us note that f(m,n) ≥ m
3n

> m
n
− 1

3
for m

n
< 1

2
. On the other hand, f(m,n) ≤ m

2n
<

m
n
− 1

3
for m

n
> 2

3
. So we are left to investigate the interval

(
1
2
, 2
3

)
(the left end of the interval does

not satisfy the condition, while the right end does).

We present an outline of the further solution which is similar to 3.4b). We obtain that each

person gets two pieces, the sizes of pieces belong to a segment
[
1
3
, d
]
where d = m

n
− 1

3
. Next, we

have f = 2n − 3m fat cakes with 4 pieces each and u = 4m − 2n usual cakes with 3 pieces each.

Each usual cake should be split into equal parts, these parts belong to 3u people, the second piece

at each such person weighs d, and all the other s = n− 3u = 7n− 12m usual people get both pieces

from fat cakes. Notice that m
n

> 1
2
implies f

s
≥ 1

2
.

Now, subtracting 1
3
from each piece of a usual cake and d from each other piece we obtain

the distribution of the remaining f nonnegative �cakes� over s usual people. The only condition

remained is that each person should get not more than two pieces, while each �cake� should contain

at most four pieces; this condition being satis�ed, we can recover the division of the usual cakes.

Hence by 4.1b) (together with the remark after it), for f
s
> 1

2
the desired division exists if and only

if f
s
∈
[
1
2
, 1
]
∪
{
v+1
v

}
∪ {∞}. The answer follows.

3.7. Answer. m
n
∈
(

2
k+1

, 2k−1
k2

]
∪
{
d(2k−1)+2

dk2+k

}
d=1,2,...

.

The solution is analogous to 3.6b).

3.8. A particular case of 3.5.

The ideas of solution of problem 3.9 is presented in the next section.
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Di�erent cakes

Recall that bxc and dxe are the largest integer not exceeding x and the smallest integer not less than

x, respectively.

4.2. a) Answer. 3
N
, if 3

∣∣ N ; max
{

3
N
− 1
b2N/3c ,

1
d2N/3e

}
otherwise.

If 3
∣∣ N , then obviously the optimal way is to cut the cakes into the pieces of 3

N
each.

Now assume that 3 6
∣∣ N . Then some person should get at least two pieces, hence the answer

does not exceed 3
2N

, and we may assume that each person gets at least two pieces.

Next, the smaller cake is divided either into ≤ b2N/3c parts, or into ≥ d2N/3e parts (for N = 2,

the second case necessarily holds). In the �rst case, one of these pieces should be ≥ 1
b2N/3c , so

its complement (at a person) is ≤ 3
N
− 1
b2N/3c . In the second case, the smaller cake contains a

piece which is ≤ 1
d2N/3e . So, in any case the minimal weight does not exceed one of the numbers

3
N
− 1
b2N/3c and

1
d2N/3e , i.e. it does not exceed D = max

{
3
N
− 1
b2N/3c ,

1
d2N/3e

}
.

We are left to present an example with D as the minimal piece weight. Assume that D =
3
N
− 1
b2N/3c . Let us divide the smaller cake into the pieces of 1

b2N/3c ≥ D, cut away the same number

of pieces of D each from the larger cake, and divide the rest into the whole portions. Obviously, this

division �ts. In the second case, the example is constructed analogously.

Remark. One may check that D = 3
N
− 1
b2N/3c if N = 3k + 2, and D = 1

d2N/3e otherwise.

b) Answer. 7
N
, if 7

∣∣ N ; max
{

7
N
− 2
b4N/7c ,

2
d4N/7e

}
otherwise.

The solution is completely analogous and is left to the reader.

The next problem gives a hint of how does the general algorithm work. We need to introduce

some

De�nitions and notation. Recall that a hypergraph is a pair (V,E) where V is the set of

vertices, and E is the set of (hyper)edges which are some nonempty subsets of V . A hypergraph

is homogeneous if all its edges have the same cardinality. For any hypergraph G = (V,E) we can

construct its underlying graph G′ = (V,E′) with the same set of vertices, connecting every two

vertices belonging to one hyperedge of G. A hypergraph is connected if its underlying graph is

connected.

Further we will denote by [b : c] the following situation: we have a cake of weight b which should

be divided into c parts. So, the notation 2 × [4 : 3] + 3 × [7 : 4] will denote the collection of two

cakes of weight 4 which should be divided into three parts each together with three cakes of weight

7 which should be divided into four parts each.

4.4. a) Answer. 49
6
.

In our notation, we have [59 : 4] + [89 : 6] + 2× [41 : 5]. One of the pieces in [89 : 6] is at least
89
6
, and its complement is ≤ 49

6
, as desired. It remains to provide an example:(

4 · 59
4

)
+

(
6 · 89

6

)
+ 2×

(
3 · 49

6
+ 2 · 33

4

)
= 4×

(
59

4
+

33

4

)
+ 6×

(
89

6
+

49

6

)
.

b) Answer. 49
6
.

In our notation, we have 2 × [41 : 5] + 3 × [35 : 4] + 11 × [29 : 2]. We say that the cakes of

weight 29 are small, and the others are large. Notice that each person should get two pieces of total

weight 23. Assume that each piece weighs at least than 49
6
; then each piece should also be at most

than 23− 49
6

= 89
6
.

Assume that a person gets two pieces from small cakes (surely these two cakes are distinct), then

the average weight of the remaining two pieces in these cakes is 2·29−23
2

> 89
6

which is impossible.
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Hence all 22 pieces of small cakes come to di�erent people, and therefore all the pieces from the large

cakes also come to di�erent people.

Now let us call the cakes of weight 41 fat, and the cakes of weight 35 usual. Construct a

hypergraph with small cakes as vertices; each edge will correspond to a usual cake and consist of all

the small cakes containing the people's complements of the pieces of this usual cake. This hypergraph

contains at least two connected components.

Now let us remove all the pieces of the usual cakes, as well as their complements in small cakes.

Next, we glue the remaining pieces of each connected component into one new �cake�. Let us calculate

a number of pieces and a weight of this �cake�.

Assume that a component contains v vertices and e edges. Due to each edge, we have removed 4

pieces of total weight 4 · 23− 35 = 57; hence the number of the pieces removed from our component

is 4e, while their total weight is 57e. Thus the average weight of the remaining pieces is 29v−57e
2v−4e

which should be ≤ 89
6 , which rewrites as 2v ≥ 7e. On the other hand, since the component is

connected, we have v ≤ 3e + 1. The two obtained inequalities hold only if the pair (v, e) is either
(4, 1) or (7, 2). Hence our hypergraph should contain one component of type (4, 1) and one of type

(7, 2). In the latter component, one of the pieces will be at least 7·29−2·57
14−8 = 89

6
which provides the

desired estimate.

But we can also get the example from this construction! Namely, from the component of type

(4, 1) we have obtained a �cake� of 4 pieces and total weight 4 ·29−57 = 59, while from the remaining

component we get a �cake� of 6 pieces and total weight 7 · 29− 2 · 57 = 89. Also we have 2× [41 : 5]
remained. Thus we come to the situation of 4.4a), so we may take the division from that example

and then �nd the weights of the removed pieces. The resulting example is

11× 29 + 2× 41 + 3× 35 = 4×
(
59

4
+

57

4

)
+ 6×

(
89

6
+

85

6

)
+

(
2 · 29

2

)
+

+ 2×
(
3 · 49

6
+ 2 · 33

4

)
+

(
4 · 35

4

)
+ 2×

(
3 · 53

6
+

17

2

)
=

= 4×
(
59

4
+

33

4

)
+ 6×

(
89

6
+

49

6

)
+ 4×

(
57

4
+

35

4

)
+ 6×

(
85

6
+

53

6

)
+ 2×

(
29

2
+

17

2

)
.

c) Answer. 49
138

= 1
23
· 49
6

(could you guess it?).

Let us multiply all the weights by 29. As usual, we may assume that each person gets exactly

two pieces, and each cake is divided into either two or three parts. Then the numbers of cakes of

both types can be found, and we arrive to the situation 12 × [29 : 3] + 11 × [29 : 2]. We say that

the cakes with three pieces are fat, and the others are usual. Assume that each piece weighs at least

than 49
6
; then each piece should also be at most than 23− 49

6
= 89

6
.

By the same reasons as above, none of the people gets two pieces from a usual cake. Hence

all 22 pieces of usual cakes come to di�erent people, and their complements belong to fat cakes.

The remaining 14 pieces of fat cakes come to 7 remaining people; let us call these people fat. Now

construct a graph with fat cakes as vertices; each edge will correspond to a fat person and connect

two fat cakes containing the cakes containing the pieces of this person. This graph contains at least

�ve connected components.

Now let us remove all the pieces of fat people. Next, we glue the remaining pieces of each

connected component into one new �cake�. Let us calculate a number of pieces and a weight of this

�cake�.

Assume that a component contains v vertices and e edges (then v ≤ e + 1). Due to each edge,

we have removed 2 pieces of total weight 23; hence the number of the pieces removed from our

component is 2e, while their total weight is 23e. Thus the average weight of the remaining pieces is
29v−23e
3v−2e which should be ≥ 49

6 , which rewrites as 27v ≥ 40e. This is impossible if v ≤ e, so we get

v = e+ 1 and hence 27 ≤ 13e, or e ≤ 2. Thus, each component is a tree (so there are exactly �ve of

them) and has at most two edges.

The most �regular� case is when there are two components with two edges and three components

with one edge; so the obtained new �cakes� will look as 2 × [41 : 5] + 3 × [35 : 4]. So by 4.4b) the

answer will be at most 49
6
.
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In any other case, an isolated vertex appears; this means that all three pieces of this cake are

paired up (in portions) with the pieces from usual cakes. Consider these three complements, and

take three usual cakes containing them. The average of three remaining pieces of these cakes is
4·29−3·23

3
> 89

6
, which is impossible. Hence the estimate is established.

The example again can be obtained from the example for 4.4b) by �lling up the removed pieces:

11× 29 + 12× 29 = 4×
(
59

4
+

57

4

)
+ 6×

(
89

6
+

85

6

)
+

(
2 · 29

2

)
+

+ 4×
(
49

6
+

33

4
+

151

12

)
+ 2×

(
49

6
+ 2 · 125

12

)
+

+ 2×
(
2 · 35

4
+

23

2

)
+ 2×

(
2 · 53

6
+

34

3

)
+ 2×

(
53

6
+

17

2
+

35

3

)
=

= 4×
(
59

4
+

33

4

)
+ 6×

(
89

6
+

49

6

)
+ 4×

(
57

4
+

35

4

)
+ 6×

(
85

6
+

53

6

)
+

+ 2×
(
29

2
+

17

2

)
+ 4×

(
151

12
+

125

12

)
+

(
2 · 23

2

)
+ 2×

(
34

3
+

35

3

)
.

3.9. a) Answer. 5
4
· m
n
− 1

2
.

First, let us prove the upper bound. As usual, we may assume that each person gets two pieces,

all the cakes are divided into 3 or 4 parts, hence there are u = 4m − 2n usual cakes of three parts

and f = 2n − 3m fat cakes of four parts. Since 4f < n (provided by m
n

> 7
12
), some person should

get both pieces from the usual cakes. Consider two cakes containing these pieces; the average weight

of the rest four pieces in them will be t = 1
4

(
2− m

n

)
, so one of these pieces weighs at least t. So its

complement weighs at most d = m
n
− t = 5

4
· m
n
− 1

2
, as desired.

The example will follow from part b).

b) We investigate only the case m
n
∈
(

7
12
, 2
3

)
where the upper bound from part a) holds. We

claim that on this interval f(m,n) = 5
4
· m
n
− 1

2
if and only if m

n
∈
(

7
12
, 22
37

]
∪
{
22d−3
37d−2

}
d=1,2,...

; here

is an outline of the proof.

We multiply all the weights by 4n; so the weight of the minimal piece should be d = 5m − 2n,
while the maximal weight should be t = 2n−m.

In our case, each person should get two pieces, there are f = 2n− 3m fat cakes with four pieces

each and u = 4m − 2n usual cakes with three pieces each. Next, it is easy to see that no person

gets two pieces from the fat cakes, so there are 4f persons getting a piece from the fat cake and

s = n− 4f usual persons with two pieces from usual cakes.

Construct a graph G having usual cakes as vertices, with the edges formed by the two pieces of

a usual person. Remove all the usual people's pieces and glue each component into a new cake. If

some connected component contains more than one edge, then deleting all the usual people's pieces

from this component we get some pieces of average weight > d which is impossible. Hence we get

s new cakes of weight 8n − 4m = 4t consisting of four pieces and u − 2s old cakes of weight 4n
consisting of three pieces. Notice that new cakes should be divided into four equal parts each.

Now we act as in 3.4b). Subtract d from each remaining piece of usual cake, and t from each

piece of a fat cake. Then the new cakes vanish, all remaining usual cakes turn into positive �cakes�

of three (or less) pieces, and all fat cakes turn into negative �cakes� of four (or less) pieces. Taking

the absolute values of negative pieces, we come to the following situation:

We have u − 2s equal cakes, and we need to cut each of them into at most three parts and

redistribute into f groups of equal weight having at most four pieces each.

Moreover, one can see that if the desired division of the �cakes� is possible then one may recover

the division of the initial cakes. Hence it remains to determine when the new problem has a solution.

This can be made in the same way as in 4.1.
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General algorithm

Finally, we show how the general algorithm works on some nontrivial example � that is, we will �nd

f(31, 52).

1.3. e) Unlike in the other problems, we do not start with an answer, but we wish to see how to �nd

it from the very beginning.

Part I. Firstly, we will perform some strange process which provides neither an example nor

the bound. But we will get an answer; and then we will check that this answer is achievable and

optimal.

During the process, we will make some assumptions on how should the optimal example look

like. So, after the example is constructed we will need to check that lacking these assumptions we will

obtain a worse division. We mark these assumprions by a bold font and number them consecutively.

Preliminaries. Multiply all the weights by 52. We will assume(1) that each person has two

pieces, and since 1
2 < m

n < 2
3 we will assume(2) that each cake is divided into three of four parts.

Then we have

11× [52 : 4] + 20× [52 : 3].

Let us call the cakes with four pieces fat, and the other cakes usual.

Initial step. Now we have 44 pieces in fat cakes, which is smaller than the number of people. We

assume(3) that all of them come to di�erent persons. Hence there will be exactly 8 usual persons

with both pieces in usual cakes. So we construct a graph on usual cakes as vertices, where each usual

person induces an edge. This graph contains 20 vertices and 8 edges, so it has at least 12 connected

components.

In such a situation we assume(4) that (i) all components are trees (so there are exactly 12

of them), and (ii) the edges are distributed between the components almost uniformly (that is, the

numbers of edges in any two components di�er by at most 1). In our case, this means that there are

8 components with one edge and 4 isolated vertices. Now, removing the pieces belonging to usual

people and gluing the pieces of one component, we come to a situation

11× [52 : 4] + 8× [73 : 4] + 4× [52 : 3].

Regular step 1. Now we have 44 small pieces in 11 fat cakes, and 44 large pieces in remaining

cakes; each person should get one piece of each type. Notice that the average weight of a piece in

[52 : 3] is smaller than that in [73 : 4]. Informally speaking, this means that we need to cut the latter

cakes as uniformly as we can. So we postpone them and deal with the remaining ones.

Consider a hypergraph on the fat cakes as vertices, with each [52 : 3] cake inducing an edge (this

edge consists of the fat cakes containing the complements of the pieces of our [52 : 3] cake). Thus

we have a hypergraph on 11 vertices with 4 edges of cardinality ≤ 3. Such hypergraph has at least

11− 4 · (3− 1) = 3 connected components.

As before, we assume(5) that (i) each component has the maximal possible number of vertices

for its number of edges (so there are exactly three of them), and (ii) the edges are distributed between

the components almost uniformly (that is, the numbers of edges in any two components di�er by at

most 1). In our case, this means that there are two components with three vertices and one edge, as

well as one component with two edges and �ve vertices. Now, removing all the pieces of [52 : 3] cakes
together with their complements, and gluing the pieces of one component, we come to a situation

2× [105 : 9] + [178 : 14] + 8× [73 : 4].

Regular step 2. Now we have 32 large pieces in [73 : 4] cakes, and 32 small pieces in remaining

cakes; each person should get one piece of each type. Notice that the average weight of a piece in

[105 : 9] is larger than that in [178 : 14]. Again, this means that we need to cut the latter cakes as

uniformly as we can, so we deal with [105 : 9] cakes.
Consider a hypergraph on the [73 : 4] cakes as vertices, with each [105 : 9] cake inducing an edge.

Unlike the previous cases, this hypergraph may be connected; so we assume(6) that it is connected,

and we are ready to �nish. We make this graph connected, hence by the standard removing we arrive

to the situation

[178 : 14] + [256 : 14].
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But this situation is trivial, and the maximal possible smallest piece is 178
14

: it is enough to divide

each cake into equal parts and give to each person one piece from each cake. Notice that our last

aim (to cut [178 : 14] with the maximal uniformity) is completely reached.

Thus, under all our assumptions we obtain that the minimal piece is at most d = 89
7
.

Part II. Now we are to construct an example, moving backwards in our process. Recall that in

our example we have

[178 : 14] + [256 : 14] =

(
14 · 89

7

)
+

(
14 · 128

7

)
.

Regular step 2. The cake [256 : 14] is obtained from 8 × [73 : 4] by removing the pieces

complementary to the ones from 2× [105 : 9]. Now we reconstruct the division of these cakes � for

instance, with the help of intervals; now it is easy to apply:

8× [73 : 4] + 2× [105 : 9] = 8×
(
3 · 128

7
+

127

7

)
+ 2 ·

(
5 · 89

7
+ 4 · 90

7

)
.

Regular step 1. The cakes 2× [105 : 9] were obtained from 3× [52 : 4] + 3× [52 : 4] by removing

the complements of the pieces from [52 : 3] + [52 : 3]; analogously, the cake [178 : 14] was obtained
from another 4× [52 : 3] by removing the complements of the pieces from 2× [52 : 3]. Now we will

reconstruct them; it is immediate after we split the pieces in [105 : 9] and [178 : 14] into the [52 : 4]
cakes they were taken from. Making this arbitrarily we get

11× [52 : 4] + 4× [52 : 3] = 4×
(
2 · 89

7
+

90

7
+

96

7

)
+ 2×

(
89

7
+ 2 · 90

7
+

95

7

)
+

+ 4×
(
3 · 89

7
+

97

7

)
+ 2×

(
2 · 89

7
+ 2 · 93

7

)
+

+ 2×
(
2 · 121

7
+

122

7

)
+ 2×

(
2 · 120

7
+

124

7

)
.

Initial step. We are left to reconstruct the last cakes 16× [52 : 3] from 8× [73 : 4] by adding the

usual people; it also goes automatically:

16× [52 : 3] = 8×
(
2 · 128

7
+

108

7

)
+ 8×

(
128

7
+

127

7
+

109

7

)
.

So the whole example is reconstructed:

11× [52 : 4] + 20× [52 : 3] = 4×
(
2 · 89

7
+

90

7
+

96

7

)
+ 2×

(
89

7
+ 2 · 90

7
+

95

7

)
+

+ 4×
(
3 · 89

7
+

97

7

)
+ 2×

(
2 · 89

7
+ 2 · 93

7

)
+

+ 2×
(
2 · 121

7
+

122

7

)
+ 2×

(
2 · 120

7
+

124

7

)
+

+ 8×
(
2 · 128

7
+

108

7

)
+ 8×

(
128

7
+

127

7
+

109

7

)
.

Part III. We are left to check that all our assumptions were necessary. It can be done easily

within the methods involved in the previous sections. Denote d = 89
6
, t = 31 − d = 128

7
. If

f(31, 52) > d then all the piece weights should belong to the interval (d, t).

Assumption (1) should hold since otherwise the least piece is at most 31
3

< d.

Assumption (2) is necessary since otherwise we get a piece of ≤ 52
5

< d or ≥ 31− 52
2

> t.

Assumption (3) should hold, otherwise let us consider a person with two pieces in two fat

cakes. Then the average weight of the remaining six pieces in these cakes is 52·2−31
6

< d.
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Assumption (4): suppose it fails; then two edges have a common vertex. Consider three

cakes participating in these edges; the average of 5 their pieces not corresponding to our edges is
3·52−2·31

5
> t.

Assumption (5) may be checked in the same way as in 4.4b).

Finally, we do not need to check the last Assumption (6) at all: to this step, we already have

a [178 : 14] cake, so the minimal piece cannot exceed 178
14

= d.

We are done!

We suggest you to apply this algorithm to the pairs from the Testing area to see how it works!
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