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OR TWO-DIMENSIONAL MEANDRA 1
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1 Examples and main problems

Figure 1: Curved spheres intersecting by a circle (left), by two circles (right)

Figure 2: Curved spheres intersecting by two circles (left), by three circles (right)

How can two curved spheres intersect in 3-space? In figures 1 and 2 you see pairs of curved
spheres in 3-space intersecting by a union of circles.

1We are grateful for useful remarks and discussions to G. Chelnokov, S. Lando and to an anonymous referee of
Moscow Mathematical Conference of High-School Students.

2Supported by Simons-IUM Fellowship
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The term curved sphere is possibly intuitively clear for you. If not, read rigorous definitions below.
Here we only remark that in this text curved sphere does not have self-intersections.

You will possibly be able to solve all the problems below without really using those rigorous def-
initions. In your solutions you can represent curved spheres by large pictures clear to jury members,
not only by formal constructions. If the formulation of a problem is a statement, it is required to
prove this statement. If a problem looks like too difficult, try to solve the neighboring problems,
they can contain hints. Unsolved problems are marked by stars.

1.1. Draw two curved spheres in 3-space intersecting by a disjoint union of 3 circles so that in
each sphere these circles

(a) bound 3 disjoint disks (like in figure 2 left).
(b) do not bound 3 disjoint disks (like in figure 2 right).

1.2. Draw two curved spheres in 3-space intersecting by a disjoint union of 4 circles so that in
each sphere these circles

(a) bound 4 disjoint disks (as in figure 3.a).
(b) are ‘parallel’, or ‘one inside the other’ (as in figure 3.b).
(c) are situated as in figure 3.c.

Figure 3: Four circles in a sphere

Suppose that M and N are collections of the same number of disjoint circles in curved spheres
S and T . Then M is situated in S as N in T if there is a bijection between connected components
(=connected parts) of S−M and T −N such that connected components of S−M are neighbors if
and only if the two corresponding connected components of T −N are neighbors. (Or, equivalently,
if pairs (S,M) and (T,N) are piecewise-linearly homeomorphic.)

1.3. (ij), i, j ∈ {a, b, c}. Draw two curved spheres in 3-space intersecting by a disjoint union of 4
circles so that in one sphere the circles are situated as in figure 3.i, and in the other as in figure 3.j.

In this text we study the following two problems and their generalizations. (You probably will
not be able to solve the problems right away, so postpone them and try to solve other problems.)

The intersection of two curved spheres is transversal if near each intersection point it looks like
the intersection of two planes having a common line. (See a rigorous definition below.)

1.4. (a) The Lando Problem. Let M and N be two unions of the same number of disjoint
circles in a sphere. Do there exist two curved spheres in 3-space whose intersection is transversal and
is a finite collection of disjoint circles that is situated as M in one sphere and as N in the other?

(b) Does there exist an algorithm for checking the existence of such two curved spheres? (Cf.
‘relation to graphs’ below.)

(c)* Does there exist such a polynomial algorithm?

In figure 1, left, two spheres intersect by a circle; each sphere is split by the circle into 2 connected
components, and each connected component has one neighboring connected component (in the same
sphere). In figure 1, right, (and in figure 2, left) two curved spheres intersect by 2 circles; each sphere
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is split by the circles into 3 connected component, of which two have one neighboring connected
component and one has two neighboring connected components (in the same sphere). In figure 2,
right, two curved spheres intersect by 3 circles; each sphere is split by the circles into 4 connected
components, in one sphere the numbers of neighbors of connected components are 3, 1, 1, 1, in the
other sphere those numbers are 1, 2, 2, 1.

1.5. Neighbor Sequence Problem. Given sequences ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn)
of positive integers, does there exist two curved spheres S, T in 3-space whose intersection consists
of n− 1 circles and splits
• S into n connected components which can be numbered so that the i-th connected component

has xi neighbors in S, and
• T into n connected component which can be numbered so that the i-th connected component

has yi neighbors in T?

Some rigorous definitions.
You will probably be able to solve all the problems without really using these rigorous definitions.
We present definitions convenient in frame of this text; they could be different from common

mathematical terms.

Figure 4: A curved sphere (left), not a curved sphere (right)

In this text a curved circle or, shortly, a circle is a closed broken line without self-intersections in
3-space. The definition of a polyhedron (without self-intersections, but possibly non-convex) is given
in [D], see also [W]. A curved sphere is a polyhedron in 3-space (more precisely, 2-dimensional surface
of the polyhedron), which is split into several parts by any circle lying on the polyhedron. See figure
1. (Such polyhedra are called topologically equivalent to sphere. This condition is equivalent to the
condition V − E + F = 2.)

In order to simplify pictures, instead of a polyhedron we draw a curved surface ‘close’ to the
polyhedron. For example, a curved sphere or a ‘sausage’ as in Figure 2. Instead of a broken line we
draw a curve ‘close’ to the broken line.

A subset X of the 3-space is connected if each two points of X can be connected by a broken
line in X. A connected component of a subset X of the 3-space is a maximal connected subset of X,
i.e., a connected subset Y ⊂ X such that there does not exist a connected subset Z ⊂ X for which
Y ⊂ Z ⊂ X and Y 6= Z 6= X.

Suppose that M is a collection of disjoint circles in curved sphere S. Two connected components
of the complement S −M are neighbors if their closures intersect.

Denote by B(x, r) ⊂ R3 the ball of radius r centered at x. Intersection of two curved spheres
S, T ⊂ R3 is transversal if for each point x ∈ S ∩ T there is r > 0 such that both B(x, r) − S and
B(x, r)∩(T −S) consist of two connected components, and each connected component of B(x, r)−S
contains a connected component of B(x, r) ∩ (T − S).

You can use the following theorem and corollary without proof.

Jordan Theorem. A curved sphere splits 3-space into exactly two connected components.
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Figure 5: A transversal intersection (left), not a transversal intersection (right)

Corollary. Suppose that S and T are curved spheres intersecting transversely by a finite union
S ∩ T of disjoint circles. Denote by B the interior part of S (or, more precisely, the bounded part of
R3− S). Let Q be a connected component of T − S which is situated inside S. Then Q splits B into
exactly two connected components.

Relation to graphs.
Suppose that M is a collection of disjoint circles in curved sphere S. Define (‘dual to M ’) graph

G = G(S,M) as follows. The vertices are connected components of S − M . Two vertices are
connected by an edge if the corresponding connected components are neighbors.

In figure 6 we show graphs for spheres S, T from figure 2 and collection S∩T of circles. Analogously
two curved spheres intersecting by circles define a pair of graphs. Then the Lando Problem asks to
describe such pairs of graphs, and Neighbor Sequence Problem asks to describe pairs of degree
sequences of such pairs of graphs. 3

Figure 6: Two graphs corresponding to Figure 2

Stars.
A team gets a star for each correct (> +.) written solution. A large picture clear to jury members,

or a well-structured computer program passing tests assigned by Jury, is recognized as an equivalent of
a written solution. Jury may also award stars for elegant solutions, for solutions of difficult problems
and for (some) solutions written in TEX. The jury has infinite number of stars. A team may present
a solution orally paying 1 star for each attempt.

We invite participants succeeding in solving these problems and working on unsolved problems
to discuss their questions and ideas of solutions.

2 Neighbor Sequence Problem

A pair ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn) of sequences of positive integers is called realizable if
there exist two curved spheres S, T in 3-space whose intersection consists of n− 1 circles and splits
• S into n connected components which can be numbered so that the i-th connected component

has xi neighbors in S, and

3Here is another interpretation suggested by I. N. Shnurnikov. Suppose that the unit square on the plane and
(piecewise linear) function on the square are given. The function is strictly positive on the boundary of the square.
The disk corresponds to the first curved sphere (with a hole), the graph of the function (above the disk) — to the
second curved sphere, the zero set of the function — to the intersection of curved spheres.
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• T into n connected components which can be numbered so that the i-th connected component
has yi neighbors in T .

Pair (S, T ) of spheres is called a realization of pair (~x, ~y).

2.1. (n), n ∈ {2, 3, 4, 5}. Which pairs of sequences of n positive integers are realizable?

2.2. (a) If pair (~x, ~y) of sequences is realizable, then x1 + · · ·+ xn = y1 + · · ·+ yn = 2n− 2.
(b) The dual graph G(S,M) to a collection M of disjoint circles in a curved sphere S is a tree.

A sequence ~x = (x1, x2, . . . , xn) of positive integers is called tree-like if x1 + · · ·+ xn = 2n− 2.

2.3. If a sequence ~x is tree-like, then it has at least x1 units.

2.4. Pair (~x, ~x) is realizable for each tree-like ~x.

2.5. Let ~x, ~y be tree-like sequences in which all the units are situated at the end. If x1 ≥ y1, then
sequences ~x′ := (x1 − y1 + 1, x2, x3, . . . , xn−y1+1) and ~y′ := (y2, y3, . . . , yn−y1+2) are tree-like.

2.6. Which pairs of tree-like sequences could be obtained from pair ((1, 1), (1, 1)) by reorderings
and changes of pair ( ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn) ) of vectors to pair:

(a) ( ~x′ = (a, x1, x2, . . . , xn, 1, 1, . . . , 1), ~y′ = (y1 + a − 1, y2, y3, . . . , yn, 1, 1, . . . , 1) ) (the number
of new 1’s is a − 2 for ~x′ and is a − 1 for ~y′; number a can be different for different changes, e.g.

((1, 1), (1, 1))
a=3→ ((3, 1, 1, 1), (3, 1, 1, 1))

a=4→ ((4, 3, 1, 1, 1, 1, 1), (6, 1, 1, 1, 1, 1, 1))).
(b) ( ~x′ = (x1 + 1, x2, x3, . . . , xn, 1), ~y′ = (y1 + 1, y2, y3, . . . , yn, 1) ).

3 The Lando Problem

A pair (M,N) of two unions of the same number of disjoint circles in a sphere is realizable if there
exist two curved spheres in 3-space intersecting transversely by a finite union of disjoint circles which
union is situated as M in one sphere and as N in the other sphere.

Figure 7: Is this pair realizable?

3.1. (a) Each pair of two unions of the same number n ≤ 4 of disjoint circles is realizable.
(b) Is pair in figure 7 realizable? One graph is the path of 6 edges, the other is triod with ‘rays’

consisting of 2 edges.
(c) Is pair in figure 8 realizable? One graph is the star with 4 ‘rays’, three ‘rays’ having two edges

and one ‘ray’ having 1 edge. The other graph is letter ‘H’ with ‘horizontal line’ consisting of 3 edges.
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Figure 8: Is this pair realizable?

(d) There is a non-realizable pair of two unions of the same number of disjoint circles.

3.2. Suppose that n and k are given integers.
(a) Which collections of circles are realizable together with the collection of n circles bounding n

disjoint disks? (Or, equivalently, which graphs are realizable together with the star of n rays?)
(b) Which graphs are realizable together with the graph that is a union, along a common edge,

of the star of n rays and the star of k rays?
(c) * Which collections of circles are realizable together with the collection of n ‘parallel’ circles?

(Or, equivalently, which graphs are realizable together with the path of length n?)

3.3. Suppose that S and T are curved spheres intersecting transversely by a finite union S ∩ T
of disjoint circles. Then connected components of S − T can be colored in black and white so that
any two same colored components are not neighbors.

In the rest of this section M,N are unions of the same number of disjoint circles in curved spheres
S, T . (Neither M nor N need to coincide with S ∩ T .)

For a connected component P of S−M denote by ∂P the union of boundary circles of P . Clearly,
connected components P and Q of S −M are neighbors if and only if ∂P ∩ ∂Q 6= ∅.

3.4. Unlinked families of circles. Suppose that S and T are curved spheres intersecting
transversely by a finite union S ∩ T of disjoint circles. Let P and Q be two connected components
of S − T which are situated inside T .

(a) If Q is a curved disk (i.e., if Q has one boundary circle), then ∂P is in one component of
T − ∂Q.

(b) If Q is a curved cylinder (i.e., if Q has two boundary circles), then ∂P is contained either in
the annulus component of T − ∂Q (i.e., in the component with two boundary circle), or in the union
of the two disk components of T − ∂Q (i.e., of the components with one boundary circle).

(c) Colour connected components of T −∂Q in black and white so that adjacent components have
different colours. Then ∂P is contained in the union of same coloured components of T − ∂Q.

The sign t means a union of disjoint sets.

3.5. Suppose that S and T are curved spheres such that S ∩ T is situated in S as it is shown in
figure 9. Denote by Ai the ‘exterior’ circles, by B the ‘big splitting’ circle and by C the union of the
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Figure 9: S ∩ T in S

‘interior’ circles, see figure 9.
(a) For each i the union B ∪ C is on the same side of Ai in T .
(b) The union B ∪ C is in the same connected component of T − tiAi.

Figure 10: Disjoint curved disk and curved cylinder outside a ball (left), disjoint curved cylinders,
one of them knotted, outside a ball (right)

3.6. Embedding Extension Problem. (a) Each two disjoint circles in the unit sphere bound
disjoint disks inside this sphere.

(b) For which three disjoint circles p, q1, q2 in the unit sphere there exist disjoint curved disks P
and curved cylinder Q inside this sphere such that ∂P = p and ∂Q = q1 t q2? (Figure 10 left.)

(c) For which four disjoint circles p1, p2, q1, q2 in the unit sphere there exist disjoint curved cylinders
P and Q inside this sphere such that ∂P = p1 t p2 and ∂Q = q1 t q2? (Figure 10 right.)

(d) For which two disjoint families p, q of disjoint circles in the unit sphere there exist disjoint
curved spheres with holes P and Q inside this sphere such that ∂P = p and ∂Q = q?

(e) Does there exist three disjoint families p, q, r of disjoint circles in the unit sphere such that
• each of the three pairs (p, q), (q, r) and (p, r) is extendable (to disjoint curved spheres with

holes) in the sense of (d);
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• there are no disjoint curved spheres with holes P,Q and R inside this sphere such that ∂P = p,
∂Q = q and ∂R = r? 4

(f) For which m disjoint families p1, . . . , pm of disjoint circles in the unit sphere there exist disjoint
curved spheres with holes P1, . . . , Pm inside this sphere such that ∂Pi = pi for each i = 1, . . . ,m?

Figure 11: (A): the dotted and the bold unions of circles are unlinked.
(B): the dotted and the bold unions of circles are not unlinked because the arrowed path between
two bold circles intersects the dotted circles in an odd number (one) of points.

Suppose that S and T are curved spheres such that each component of S − T except one have
one neighbor. (The ‘exceptional’ component may have one or more neighbors.) This ‘exceptional’
component is called a curved sphere with holes. A curved disk is a curved sphere with 1 hole (=with
1 neighbor). A curved cylinder is a curved sphere with 2 holes (=with 2 neighbors).

Let M and N be two unions of disjoint circles in the unit sphere S. Colour connected components
of S − q in black and white so that adjacent components have different colours. Union M is on the
same side the same side (in this sphere) of N if M is contained in the union of same coloured
components of S −N . Unions M and N are unlinked (in this sphere) if M is on the same side of N
and N is on the same side of M . See figure 11.

3.7. (a) There are two unions M and N of disjoint circles in a sphere such that M is on the same
side of N but N is not on the same side of M .

(b) Is unlinkedness transitive? That is, if M and N , N and P are unlinked, are then M and P
necessarily unlinked?

(c) For a union M of disjoint circles in the unit sphere S denote by M̊ the unions of black
connected components of S − M . (There are two choices of M̊ for given M ; one of them is the
complement to the other.) Two unions M and N are unlinked if and only if for each black and white
colourings for M and for N such that M̊ ∪ N̊ 6= S we have either M̊ ⊂ N̊ or N̊ ⊂ M̊ or M̊ ∩ N̊ = ∅.

4This should be compared with the well-known Borromean rings example.
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HOW DO CURVED SPHERES INTERSECT IN 3-SPACE,

OR TWO-DIMENSIONAL MEANDRA

S. Avvakumov, A. Berdnikov, A. Rukhovich and A. Skopenkov

4 Intermediate finish. Some solutions and new problems

1.1 and 1.2. Analogously to solution of Problem 2.4.

Figure 12: To the solution of Problem 1.3.

1.3. The case i = j follows analogously to Problem 2.4. The cases ab, ac and bc are shown in
figure 12.

1.4. (a) The answer is given by the answer to Problem 4.5.
(b) Such an algorithm is given by the answer to Problem 4.5. (Clearly, it is not polynomial.)

1.5. Theorem 1. Let n be a positive integer and ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn) be
sequences of positive integers. There exist curved spheres S, T in 3-space whose intersection consists
of n− 1 circles and splits
• S into n connected components which can be numbered so that the i-th connected component

has xi neighbors in S, and
• T into n connected components which can be numbered so that the i-th connected component

has yi neighbors in T
if and only if x1 + · · ·+ xn = y1 + · · ·+ yn = 2n− 2.

This follows from Theorem 1’ (Problem 4.3) below.

2.1. Answer. Pairs (~x, ~x) are realizable for ~x up to reordering equal to

(1, 1), (2, 1, 1), (3, 1, 1, 1), (2, 2, 1, 1), (4, 1, 1, 1, 1), (3, 2, 1, 1, 1), (2, 2, 2, 1, 1).
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Other realizable pairs are up to reordering pairs of two sequences of the same number of elements
from this list.

2.2. (a) Suppose that curved spheres S, T realize pair (~x, ~y). Recall definition of a graph G =
G(S, S ∩ T ) from §1. The number of the vertices is n. Out of k-th vertex there issues xk edges.
Hence the number of the edges is (x1 + · · · + xn)/2. It is obvious that G is connected. By the
Jordan Curve Theorem 5 G is split by any edge. So G is a tree. Hence the number of edges is
n− 1 = (x1 + · · ·+ xn)/2. Analogously n− 1 = (y1 + · · ·+ yn)/2. QED

Sketch of an alternative solution of (a) by T. Nowik. By induction on the number of circles. The
statement is true for one circle (there are only 2 disks on each sphere hence n = 2). Each additional
circle splits one connected component into two, and adds two boundary circles.

(b) Clealy G is connected. By the Jordan Curve Theorem G is split by any edge. So G is a tree.

2.3. If the number of units is s, then 2n−2 = x1+ · · ·+xn ≥ x1+2(n−1−s)+s = 2n−2+x1−s.
So s ≥ x1.

2.4. Let S be the unite cube. Take a family M of circles on S ‘realizing’ ~x. (The existence of
such a family is proved by induction; the inductive step is proved using deletion of a hanging vertex.)
Color the complements in S to these circles into black and white so that neighboring components
have different colors. Take a sphere T close to S and such that S ∩ T = M , each black component
of T is inside S, and each white component of T is outside S. Then S, T realize (~x, ~x).

2.5. By Problem 2.3 x1 ≤ s. Then

xn−y1+1 = xn−y1+2 = · · · = xn−y1+1 = · · · = xn = yn−y1+1 = yn−y1+2 = · · · = yn = 1.

Hence (

n−y1+1∑
i=1

xi)− y1 + 1 = (
n∑

i=1

xi)− y1 + 1− (y1 − 1) = 2(n− y1 + 1)− 2

and (

n−y1+2∑
i=2

yi) = (
n∑

i=1

yi)− y1 − (y1 − 2) = 2(n− y1 + 1)− 2.

So the new sequences are tree-like.

2.6. Answer: each pair.
(a) Induction on n. The inductive base n = 2 is clear. Suppose that the statement is true for

each n < k, let us prove it for n = k.
If sequences ~u = (u1, . . . , uk) and ~v = (v1, . . . , vk) are the same up to reordering, then pair (~u,~v)

is realizable by Problem 2.4. If sequences ~u and ~v are not the same up to reordering, then reorder the
sequences so that u1 6= v1 and the units are at the end of the sequences. Without loss of generality
u1 < v1. Denote

a := u1, n := k− u1 + 1, xi = ui+1 for i = 1, . . . , n, y1 := v1− u1 + 1, yi = vi for i = 2, . . . , n.

By Problem 2.3 ui = 1 for each i ≥ n+ 2 and vi = 1 for each i ≥ n+ 1. Thus pair (~u,~v) is obtained
from pair (~x, ~y) by given transformation. We have

x1 + · · ·+ xn = u2 + · · ·+ un+1 = 2k − 2− u1 − (u1 − 2) = 2n− 2 and

y1 + · · ·+ yn = v1 + · · ·+ vn − (u1 − 1) = 2k − 2− (u1 − 1)− (u1 − 1) = 2n− 2.

So the sequences ~x and ~y are tree-like. Since u1 > 1, we have n < k. Inductive step is proved.
(b) By induction on n.

5Jordan Curve Theorem. A circle on a sphere splits the sphere into exactly two parts. Two points of the sphere
not lying on the circle both lie in the same part if and only if they can be connected them by (spherical) broken line
not intersecting the circle.
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Figure 13: Two spheres realizing the pair in figure 13.

3.1. (a) Follows from Problems 1.1 and 1.3.
(b) Yes. See figure 13. An alternative construction is as follows. Let S and T ′ be the curved

spheres from figure 2. Let T ′′ be a sphere inside T ′ ‘close and parallel’ to T ′. Take the connected
component X of R3 − S − T ′ lying inside T ′ whose boundary contains a disk connected component
of T ′ − S. Let T be a curved sphere obtained by joining T ′ and T ′′ by a tube in X. Then S and T
are as required.

(c) No. This fact is obtained using a computer program based on solution of Problem 4.5.
(d) An example is shown in figure 14. Hint: use Problem 3.5 (or Problem 3.4 in the form 4.7

below).

Figure 14: Nine circles (thick) situated in a sphere (thin) in two different ways (left, right).

3.2. (a) Answer: each collection is. Hint. Take n disjoint spheres intersecting given sphere S at
the n circles of given collection M . Connect them by n− 1 disjoint tubes (‘along a tree’) inside S to
obtain sphere T . Check that T is as required.

(b) Conjecture. The pair of such a graph and a tree is realizable if and only if this tree is the
union of two trees with n and k edges intersecting by exactly one edge.

(c) Conjecture. Any collection of n circles is realizable together with the collection of n ‘parallel’
circles.

3.3. Colour in black and white the connected components inside and outside T , respectively.
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3.4. (a) and (b) are intuitively obvious and follow by (c).
(c) We may assume that T is a round sphere and that circles of ∂Q are round circles, none of

them being an equator. For each circle of ∂Q take the round sphere passing through this circle and
the center of T . The union of Q and the parts of such spheres lying outside T is a curved sphere, say,
Q′. Sphere Q′ splits R3 into two connected components. Since Q is connected, intersection of both
connected components with the interior of T is connected. These connected components intersect T
by black and white parts, respectively. Since P lies in one of the components, ∂P either lies in black
part of T − ∂Q or lies in white part of T − ∂Q.

3.5. (a) is analogous to (b).
(b) Consider disks A1, A2, A3 ⊂ S bounded by A1, A2, A3 ⊂ S and not containing other circles.

Without loss of generality we may assume that the interiors of these disks lie inside T . Then the
interior of the component of S−M bounded by B ∪C lies inside T as well (because the intersection
S∩T is transversal). This interior lies in one of the connected components of R3−(T ∪A1∪A2∪A3).
So all the 4 circles of B ∪ C lie in the same connected component of T − (A1 ∪ A2 ∪ A3).

Note that this is a particular case of Problem 3.4.c (cf. Problem 4.6.a).

3.7. (a) See definitions of A0, A+ and A− in figure 15 and the Example below in §4. Set {A0} is
on the same side of set {A+, A−} but not vice versa.

(b) No.

Some new problems on the Neighbor Sequence Problem.

A pair ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn) of sequences of positive integers is called strongly
realizable if there exist two curved spheres S, T

(1) whose intersection consists of n− 1 circles and splits
• S into n connected components which can be numbered so that the i-th connected component

has xi neighbors in S, and
• T into n connected components which can be numbered so that the i-th connected component

has yi neighbors in T ;
(2) there is a circle of S ∩ T that bounds a disk and a component with x1 neighbors in S − T , as

well as bounds a disk and a component with y1 neighbors in T − S.
Pair (S, T ) of spheres is called a strong realization of pair (~x, ~y).

4.1. Let ~x, ~y be tree-like sequences in which all the units are situated at the end. If pair of
sequences ~x′ := (x1−y1 +1, x2, x3, . . . , xn−y1+1), ~y

′ := (y2, y3, . . . , yn−y1+2) is strongly realizable, then
pair (~x, ~y) is strongly realizable.

4.2. If pair (~x, ~y) is strongly realizable, then for each positive integer a pairs (~x′, ~y′) are strongly
realizable for:

(a) ~x′ = (a, x1, x2, . . . , xn, 1, 1, . . . , 1), ~y′ = (y1 + a− 1, y2, y3, . . . , yn, 1, 1, . . . , 1).
(The number of new 1’s is a− 1 for ~y′ and is a− 2 for ~x′; number a can be different for different

changes.)
(b) some choice of ~x′ ∈ {(1, x1 + 1, x2, x3, . . . , xn), (x1 + 1, x2, x3, . . . , xn, 1)} and

~y′ ∈ {(1, y1 + 1, y2, y3, . . . , yn), (y1 + 1, y2, y3, . . . , yn, 1)}.
4.3. Theorem 1’. A pair of sequences is strongly realizable if and only if both sequences are

tree-like.

Hint: Use Problems 2.5 and 4.1 (or, alternatively, Problems 2.6 and 4.2).

Some new problems on the Lando Problem.

4.4. Each pair of unions of
(5) 5; (6) 6;
disjoint circles is realizable.
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The Lando problem is solved via solution of its numbered, or colored, analogue. Let us introduce
definitions necessary to formulate the analogue.

Assume that M and N are two sets of disjoint circles in spheres S and T , and that in each set
the circles are numbered by 1, 2, . . . , n. Pair (M,N) is realizable if there exist two curved spheres S ′

and T ′ intersecting transversely by a finite union S ′ ∩T ′ of disjoint circles, and a numbering of these
circles such that
• S ′ ∩ T ′ in S ′ and M in S are numbered equivalent;
• S ′ ∩ T ′ in T ′ and N in T are numbered equivalent.
(Numbered sets M in S and N in T are numbered equivalent if there is a 1-1 correspondence

between connected components of S − M and of T − N such that two connected components of
S −M are adjacent along a circle of M if and only if the two corresponding connected components
of T −N are adjacent along the corresponding circle of N .)

Figure 15: Numbered sets (A−, A0, A+) and (A0, A−, A+) are not numbered equivalent.

Example. On the unit sphere (or on the Earth sphere) let A0 = A2 be the equator, A+ = A1 the
parallel of sixty degrees northern latitude, A− = A3 the parallel of sixty degrees southern latitude.
See figure 15. Then
• unnumbered (or, equivalently, unordered) sets {A+, A0, A−} and {A0, A+, A−} are the same (or

unnumbered equivalent).
• numbered (or, equivalently, ordered) sets (A−, A0, A+) and (A+, A0, A−) are numbered equiva-

lent.
• numbered sets (A+, A0, A−) and (A0, A+, A−) are not numbered equivalent.
• pair (A+, A0, A−), (A0, A+, A−) of numbered sets in the unit sphere S and in its copy T is

non-realizable.

Proof of the last assertion. Suppose to the contrary that there are spheres S ′ and T ′ realizing
given pair. Denote by
• Bk the copy Ak on the copy T of S;
• A′k the circle on S ′ corresponding to Ak;
• B′k the circle on T ′ corresponding to Bk;
• D′ ⊂ S ′ the disk in S ′ − T ′ bounded by A′+;
• C ′ ⊂ S ′ the cylinder in S ′ − T ′ bounded by A′0 and A′−.
See figure 16. Since S ′ and T ′ realize pair (A+, A0, A−), (B0, B+, B−), we have A′+ = B′0, A

′
0 = B′+

and A′− = B′−.
Clearly, C ′ and D′ lie in 3-space on the same side from sphere T ′. (Cf. Problem 3.3.) We have

∂D = A′+ = B′0. The boundary ∂C ′ = A′0 t A′− = B′+ t B′− does not lie in one component of
T ′ − ∂D′ = T ′ − B′0. This contradicts to the assertion of Problem 3.4.a for P = C ′ and Q = D′.
QED
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Figure 16: Curved spheres S ′ and T ′ drawn apart

4.5. The Numbered Lando Problem. Which pairs of disjoint unions of numbered circles are
realizable?

4.6. (a) If pair (M,N) of disjoint unions of numbered circles in spheres S and T is realizable,
then connected components of S −M can be colored in black and white so that for each two same
coloured components P and Q of S−M unions in T corresponding to ∂P and ∂Q are unlinked in T .

(b) Does the converse to (a) hold?

Let p and q be two sets of edges of a tree G. Colour connected components of the complement in
G to the interiors of edges of q. Set p is on the same side (in this tree G) of q if p is contained in the
union of same-coloured connected components of G − q (or, equivalently, if p ∩ q = ∅ and for each
two vertices of edges of p there is a path in the tree connecting these two points, and containing an
even number of edges of q). Sets p and q are unlinked (in this tree) if p is on the same side of q and
q is on the same side of p.

For a vertex P of a graph denote by δP the union of edges issuing out of P .
Graphs G(S,M) and G(T,N) are defined in §1. Numberings of circles in M and of circles in N

give numberings of edges in G(S,M) and of edges in G(T,N).

4.7. (a) If pair (M,N) of disjoint unions of numbered circles in spheres S and T is realizable,
then the vertices of G(S,M) can be colored in black and white so that for each two same coloured
vertices P,Q of G(S,M) the unions in G(T,N) corresponding to δP and δQ are unlinked in G(T,N).

(b)* Given two trees G and G′ having the same number of edges, is there a polynomial algorithm
for checking the existence of numberings of their edges such that the vertices of G can be colored in
black and white so that for each two same coloured vertices P,Q of G the unions in G′ corresponding
to δP and δQ are unlinked in G′?

5 More spheres and spheres with handles

Let n1, n2, n3 be positive integers. A triple

~x1 = (x11, x12, . . . , x1n1), ~x2 = (x21, x22, . . . , x2n2), ~x3 = (x31, x32, . . . , x3n3)

of sequences of positive integers is called realizable if there exist three curved spheres S1, S2, S3 in
3-space pairwise intersecting by circles and such that S1 ∩ S2 ∩ S3 = ∅ and for each k = 1, 2, 3 the
complement Sk−Sk+1−Sk+2 has nk connected components which can be numbered so that the i-th
connected component has xki neighbors in Sk for each i = 1, . . . , nk.

14



In this section (and in corresponding solutions) subscripts k, k + 1, k + 2 are considered mod 3.
Triple (S1, S2, S3) of spheres is called a realization of triple ( ~x1, ~x2, ~x3).

5.1. Triple Neighbor Sequence Problem. Which triples of tree-like sequences are realizable?

5.2. Which triples of tree-like sequences, each having at most 4 numbers, are realizable?

5.3. If a triple of sequences of lengths n1, n2, n3 is realizable, then
(a) n1 + n2 + n3 is odd;
(b) nk < nk+1 + nk+2 for each k = 1, 2, 3.

5.4. Let x1 ≥ x2 ≥ · · · ≥ xn be a tree-like sequence. Let p, q be positive integers such that
p ≥ q > 1 and p+ q = n+ 1. Then there exist two tree-like sequences a1, a2, . . . , ap and b1, b2, . . . , bq
such that a1 + b1 = x1 and ordered sets (a2, a3, . . . , ap, b2, b3, . . . , bq) and (x2, x3, . . . , xn) are the same
up to reordering.

What are analogs of characterizations of neighbor sequences (of Theorems 1 and 2) for intersec-
tions of more than three curved spheres?

5.5. * Conjecture. Let n1, n2, n3, . . . , ns be positive integers and

x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2 , . . . , xs1, xs2, . . . , xsns

sequences of positive integers. There exist s curved spheres S1, S2, . . . , Ss pairwise intersecting by
circles and such that
• no three of them intersect;
• for each k = 1, . . . , s and j = 1, . . . , nk the complement Sk − Sk+1 − Sk+2 − · · · − Sk+s−1 has nk

connected components, of which the j-th has xkj neighbors in Sk;
if and only if each of s sequences is tree-like, and n1 +n2 + · · ·+ns− s is an even number greater

or equal to 2nk for each k = 1, . . . , s.

For s < 4 this conjecture is proved (see Theorems 1 and 2), the first unknown case is s = 4.
What can be neighbor sequences if there can be ‘triple points’, i.e. intersection points of of three

spheres?

5.6. * Conjecture. Let n1, n2, n3 be positive integers and

x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2 , x31, x32, . . . , x3n3

be sequences of positive integers. Then there exist curved spheres S1, S2, S3 in 3-space
• pairwise intersecting by circles,
• having 2T triple intersection points and
• such that for each k = 1, 2, 3 the complement Sk − Sk+1 − Sk+2 has nk connected components

and the i-th connected component has xki neighbors in Sk for each i = 1, . . . , k
if and only if n1 +n2 +n3 +T is odd, xk1 +xk2 + · · ·+xknk

= 2nk−2+2T and nk +T < nk+1 +nk+2

for each k.

What are analogs of Theorems 1 and 2 for intersections of curved spheres with handles?

5.7. * Conjecture. Let g1, g2, n be positive integers and

x11, x12, . . . , x1n, x21, x22, . . . , x2n

two sequences of positive integers. There exist curved sphere with g1 handles S1 and curved sphere
with g2 handles S2 such that they intersect by circles splitting Sk into n connected components, of
which the j-th has xkj neighbors in Sk for each k = 1, 2 and j = 1, . . . n

if and only if s := x11 +x12 + · · ·+x1n = x21 +x22 + · · ·+x2n is even and 2n−2 ≤ s ≤ 2n−2+2gk

for each k = 1, 2.

It would be interesting to solve analogous problems in case when self-intersections are allowed.
Both cases are interesting — either with triple self-intersection points or without them.
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HOW DO CURVED SPHERES INTERSECT IN 3-SPACE,

OR TWO-DIMENSIONAL MEANDRA

S. Avvakumov, A. Berdnikov, A. Rukhovich and A. Skopenkov

6 Solutions after finish

In this section curved spheres are shortly called spheres.

Neighbor sequence problem

Figure 17: Inductive construction

4.1. We may assume that x1 ≥ y1. Take spheres S ′, T ′ realizing pair (~x′, ~y′) of sequences. Take
a circle of S ′ ∩ T ′ from condition (2). This circle that bounds
• in S ′ − T ′ a connected component, say C, that has x1 − y1 + 1 neighbors,
• in T ′ − S ′ a disk, say D.
We modify spheres S ′, T ′ by joining C and D by y1 − 1 fingers, see Figure 17. Denote the new

spheres by S and T . Let us prove that they realize pair (~x, ~y) of sequences.
Condition (1) is satisfied for S, T because
• each component of S ′ − T ′ except C is also a component of S − T ,
• C is separated by y1 − 1 circles of (S ∩ T )− (S ′ ∩ T ′) into y1 − 1 disks and a component with

(x1 − y1 + 1) + (y1 − 1) = x1 neighbors.
and
• each component of T ′ − S ′ except D is also a component of T − S,
• D is separated by y1 − 1 circles into y1 − 1 disks and a component with y1 neighbors.
Any circle of (S ∩ T )− (S ′ ∩ T ′) satisfies condition (2).

4.3. Proof of Theorem 1’. Proof by induction on the length n of the sequences. For each tree-like
sequence of n numbers we have n ≥ 2. The induction base is n = 2 and is clear.

Let us prove the induction step. Suppose Theorem 1’ is proved for 2, 3, . . . , n − 1 ≥ 2. Let us
prove it for n.
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Reorder our sequences so that the 1’s will be at the end. By Problems 2.5 and 4.1 and by the
induction hypothesis the new sequences are realizable. Take spheres S, T realizing the new sequences.
So S, T satisfy condition (1) from the definition of the strong realizability for the old sequences. Also,
• if x1 6= 1, then conditions (2) for the new and for the old sequences ~x are equivalent;
• if x1 = 1, then the circle from condition (2) for the new sequence ~x bounds a disk, so it bounds

a component with x1 = 1 neighbor.
Same holds for ~x replaced by ~y. So condition (2) is also satisfied for the old sequences. Thus S, T

strongly realize the old sequences.

Lando problem

3.1. (d) A direct solution. Assume to the contrary that there exist two spheres S ′ and T ′ realizing
pair (M,N) from figure 14. Denote the connected components of S ′ − T ′ as shown in fig. 14 left.

Without loss of generality we may assume that the interiors of disks A1, . . . , A4 ⊂ S ′ lie inside
T ′. Then the interior of component C ⊂ S ′ lies inside T ′ as well (because the intersection of S ′ and
T ′ is transversal). Since C,A1, . . . , A4 are disjoint, C lies in one of the connected components of
R3− T ′ ∪

⊔
Ai. So all the 5 circles of ∂C lie in the same connected component of T ′−

⊔
∂Ai. (Here

we use a trivial particular case of the Embedding Extension Theorem.)
Let us restate the previous statement in terms of graph G := G(T ′, N) (fig. 18). Denote by G(C)

the union of 5 edges of G corresponding to the circles of ∂C. Then G(C) lies completely in one of the
connected components of the compliment of G to the 4 edges corresponding to the circles of

⊔
∂Ai.

Since G has only 9 edges, this means that G(C) is a subtree of G. Denote by G(B) the union of 5
edges of G corresponding to the circles of ∂B. Likewise, G(B) is a subtree of G.

Since G(B) ∪ G(C) = G, at least two of the three edges a, b, c of G (fig. 18) belong to one of
subtrees G(B) or G(C). Without loss of generality we may assume that a, b ∈ G(B). But any subtree
of G containing both a and b has at least 6 edges while G(B) has only 5 edges. Contradiction.

Figure 18: Graph G := G(T ′, N).

3.6. (a) Clear.
(b) ... if and only if circles q1 and q2 are on the same side of p.
(c) ... if and only if p1 t p2 and q1 t q2 are unlinked.
(d) ... if and only if p and q are unlinked. Hint: generalize solution of Problem 3.6.d 3.2.a.

Formal solution is obtain by taking m = 2 in the solution of (f).
(e) No, by the answer to (f).
(f) ... if and only if pi and pj are unlinked for each i 6= j.
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Figure 19: To the solution of Problem 3.6.f. (A) We have S (gray), p1 (red), p2 (green), p3 (blue).
(B) We have that p̊3 (blue) is the ‘smallest’. We construct P1 (yellow) and P2 (green) by induction.
(C) Connected components of p̊3 (blue) can be connected by a path disjoint with P1 ∪ P2. So we
connect them by a tube and obtain P3 (blue).

Embedding Extension Theorem. Unions p1, . . . , pm of disjoint circles in the unit sphere S
are pairwise unlinked if and only if there exist disjoint curved spheres with holes P1, . . . , Pm whose
interiors are inside S and such that ∂Pi = pi for each i = 1, . . . ,m.

Proof. The necessity is essentially proved in Problem 3.4.c. The sufficiency is proved by induction
on m. Base m = 1 is essentially proved in the solution of Problem 3.2.a. Let us prove the inductive
step. Take a point O ∈ S −

⊔
pi

i=1,...,m

. For each i take a black and white colouring of S − pi such

that O is white. Recall that p̊i is the union of black components of S − pi. Since O is white and pi

and pj are unlinked, by Problem 3.7.b for each i 6= j either p̊i ⊂ p̊j or p̊j ⊂ p̊i or p̊i ∩ p̊j = ∅. So
there is a ‘smallest’ p̊i, i.e. p̊i such that p̊j 6⊂ p̊i for each j 6= i. We may assume that i = m. Then

p̊m ∩
m−1⊔
i=1

pi = ∅, p̊m is a collection of curved spheres with holes, ∂p̊m = pm and p̊m ⊂ S. Denote by

∆ the closed 3-ball bounded by S (i.e., ‘the interior part’ of S). By the inductive hypothesis there
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are disjoint spheres with holes P1, . . . , Pm−1 ⊂ ∆ such that ∂Pi = pi for each i = 1, . . . ,m− 1.

Figure 20: Proof of Claim

Claim. Union pm lies in one connected component of ∆− (P1 t · · · t Pm−1). 6

Proof of Claim. Take any two points A,B ∈ pm. Denote by l a path inside S connecting A and

B such that l := #(l∩
m−1⊔
i=1

Pi) is minimal (minimal by l, objects A,B, pm, S, P1, . . . , Pm−1 are fixed).

Assume to the contrary that l is not as required, i.e., l > 0. Since pm is on the same side of ∂Pi,
points A and B are in the same connected component of ∆ − Pi, so #(l ∩ Pi) is even for each i.
(If m = 2, we may even obtain that #(l ∩ P1) = 0 and stop here.) Then #(l ∩ Pi) ≥ 2 for some i.
Denote by Q and R two consecutive points of l ∩ Pi. Denote by Q′ the point of l slightly before Q
and by R′ the point of l slightly after R. Since Pi is connected, Q and R can be connected by a path
in Pi. So Q′ and R′ can be connected by a path l′ very close to Pi but not intersecting Pi. Path l′

does not intersect any of P1, . . . , Pm−1 because it is very close to Pi and P1, . . . , Pm−1 are pairwise
disjoint. Substitute the part of l between Q′ and R′ by l′. Denote the obtained path by l′′. Then
l′′ = l − 2. This contradicts to the minimality of l. Thus l is as required. QED

Completion of the proof of Embedding Extension Theorem. Let p̊′m be a disjoint union of curved
spheres with holes obtained from p̊m by a slight deformation so that the interior of p̊′m is inside the
interior of ∆ and ∂p̊′m = ∂p̊m = pm. By Claim each two points of p̊′m can be connected by a path
inside S disjoint with P1, . . . , Pm−1. So we can connect all the connected components of p̊′m by tubes
inside S disjoint with P1, . . . , Pm−1. The number of the tubes is one less than the number of the
connected components of p̊′m, so that there are no ‘cycles of tubes’. Then we obtain a sphere with
holes. Denote it by Pm. We have ∂Pm = pm, Pm ⊂ ∆ and Pm is disjoint with P1, . . . , Pm−1. The
inductive step is proved. QED

4.4. This fact is obtained using a computer program based on Theorem 3 below.

4.5. The answer is given by Problem 4.6 and is as follows.
Theorem 3. Pair (M,N) of disjoint unions of numbered circles in spheres S and T is realizable

if and only if connected components of S −M can be colored in black and white so that for each two
same coloured components P and Q of S−M unions in N corresponding to ∂P and ∂Q are unlinked
in T .

4.6. (a) This is a restatement of Problem 3.4.

6This assertion for m = 2 is essentially the definition of the comparability (or, rather, of ‘p2 is on the same side of
∂P1’). This case m ≥ 3 is interesting because in general the union of two subsets could split the ambient set even if
each subset alone does not split the ambient set.
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(b) Yes. The idea is to prove and use the answer to Embedding Extension Problem 3.6.e.
Let T ′ be the unit cube. Numberings give a 1–1 correspondence h between circles of M and

circles of N .
Denote byA1, . . . , Am the white connected components of S−M . By the assumption h(∂A1), . . . , h(∂Am)

are pairwise unlinked in T ′. By the answer to Embedding Extension Problem 3.6.e there exist disjoint
curved spheres with holes A′1, . . . , A

′
m whose interiors are inside T ′ and such that ∂A′i = h(∂Ai) for

each i = 1, . . . ,m.
Denote by B1, . . . , Bn the black connected components of S−M . Analogously there exist disjoint

curved spheres with holes B′1, . . . , B
′
n whose interiors are outside T ′ and such that ∂B′i = h(∂Bi) for

each i = 1, . . . , n.
Let S ′ := (A′1 ∪ . . . ∪ A′m) ∪ (B′1 ∪ . . . ∪ B′n). By construction S ′ does not have self-intersections.

We have that A′i has the same number of holes as Ai, and B′i has the same number of holes as Bi.
Since S = (A1 ∪ . . . ∪ Am) ∪ (B1 ∪ . . . ∪ Bn) is a curved sphere, S ′ is a curved sphere. (A rigorous
proof is obtained using Euler characteristic.) Clearly, S ′ and T ′ realize given pair M,N .

4.7. (a) This is a restatement of Problems 3.4 and 4.6.

More spheres and spheres with handles

5.1. Theorem 2. Let n1, n2, n3 be positive integers and

x11, x12, . . . , x1n1 , x21, x22, . . . , x2n2 , x31, x32, . . . , x3n3

be sequences of positive integers. There exist curved spheres S1, S2, S3 in 3-space pairwise intersecting
by circles and such that
• S1 ∩ S2 ∩ S3 = ∅;
• Sk−Sk+1−Sk+2 has nk connected components, which can be numbered so that the i-th component

has xki neighbors in Sk, for each k = 1, 2, 3
if and only if the sequences are tree-like, n1 + n2 + n3 is odd and nk < nk+1 + nk+2 for each

k = 1, 2, 3.

Figure 21: Construction of three spheres
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Proof. The ‘only if’ part follows by Problems 2.2 and 5.3. Let us prove the ‘if’ part. Let

m1 := (n2 + n3 − n1 + 1)/2, m2 := (n1 + n3 − n2 + 1)/2, m3 := (n1 + n2 − n3 + 1)/2.

So
m1 +m2 = n3 + 1, m1 +m3 = n2 + 1, m2 +m3 = n1 + 1.

By Problem 5.4 there exist sequences

p11, p12, . . . , p1m3 , p21, p22, . . . , p2m1 , p31, p32, . . . , p3m2 ,

q11, q12, . . . , q1m2 , q21, q23, . . . , q2m3 , q31, q32, . . . , q3m1 ,

such that pk−1,1 + qk+1,1 = xk1 and ordered sets

(pk−1,2, pk−1,3, . . . , pk−1,mk+1
, qk+1,2, qk+1,3, . . . , qk+1,mk−1

) and (xk2, xk3, . . . , xknk
)

are the same up to reordering. By Theorem 1’ there exist spheres

Q1, P1, Q2, P2, Q3, P3 ⊂ R3 such that Qk ∩Qk+1 = ∅, Qk ∩ Pl = ∅ if l 6= k − 1 and

• Qk − Pk−1 is the disjoint union of mk+1 connected components, i-th one has qki neighbors
• Pk−1 −Qk is the disjoint union of mk+1 connected components, i-th one has pk−1,i neighbors
• the boundary of some connected component of R3 − Pk−1 −Qk contains a component q̃k with

qk1 neighbors on Qk and a component p̃k−1 with pk−1,1 neighbors on Pk−1.
For k = 1, 2, 3 let Sk be the connected sum of spheres Qk+1 and Pk−1 along a small tube joining

the two components q̃k+1 and p̃k−1 from the third condition, see Figure 21. This can be done without
intersections of the three tubes.

Then Sk − Sk+1 − Sk+2 is as required for each k = 1, 2, 3. QED.

5.2. Answer: these triples are

{(2, 1, 1), (2, 1, 1), (2, 1, 1)}, {(3, 1, 1, 1), (3, 1, 1, 1), (2, 1, 1)}, {(3, 1, 1, 1), (2, 2, 1, 1), (2, 1, 1)},

{(3, 1, 1, 1), (2, 1, 1), (1, 1)}, {(2, 2, 1, 1), (2, 2, 1, 1), (2, 1, 1)},

{(2, 2, 1, 1), (2, 1, 1), (1, 1)}, {(2, 1, 1), (1, 1), (1, 1)}.

Proof. There exist only 4 tree-like sequences of length at most 4. They are

(1, 1), (2, 1, 1), (3, 1, 1, 1), (2, 2, 1, 1).

According to Problem 5.3 the number of odd length sequences in a realizable triple is odd. So in
each realizable triple of sequences of length at most 4, except triple {(2, 1, 1), (2, 1, 1), (2, 1, 1)}, there
are one sequence (2, 1, 1) and two sequences of even length. According to the answer to Problem 5.1
all these 7 triples are realizable.

5.3. Let m3,m2,m1 be the numbers of the circles in f1 ∩ f2, f1 ∩ f3 and f2 ∩ f3. Then n1 =
m3 +m2 + 1, n2 = m3 +m1 + 1, n3 = m2 +m1 + 1.

So n1 + n2 + n3 = 2(m3 +m2 +m1) + 3 is odd.
Since 2mk + 1 > 0 we have nk < nk+1 + nk+2 for each k = 1, 2, 3.

5.4. Let r = r(~x) be the number of those xi’s that are greater than 1. Let zs = x2 +x3 + · · ·+xs.
For each s ≤ r let

a1 = p− (zs − s+ 3) + 1, ai = xi for 2 ≤ i ≤ s and ai = 1 for s+ 1 ≤ i ≤ p,
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b1 = x1 − a1, bi = xi+s−1 for 2 ≤ i ≤ r − s+ 1, bi = 1 for r − s+ 2 ≤ i ≤ q = n+ 1− p.

Since s ≤ r, the sequence b1, b2, . . . , bq is well-defined. For each i we have that ai and bi depend on s.
We have

a1 + a2 + · · ·+ ap = p− (zs − s+ 3) + 1 + zs + p− s = 2p− 2,

i.e. the sequence a1, a2, . . . , ap is tree-like. Also

b1 + b2 + · · ·+ bq = zn − a1 − a2 − · · · − ap = 2n− 2− 2p+ 2 = 2q − 2,

i.e. the sequence b1, b2, . . . , bq is tree-like.
It remains to prove that there exists s ≤ r such that 1 ≤ a1 ≤ x1 − 1. For each i < r we have

x1 ≥ xi, so
zi − i+ x1 + 1 ≥ (zi+1 − (i+ 1) + 3)− 1.

In other words,
2 = z1 − 1 + 3,

z1 − 1 + x1 + 1 ≥ (z2 − 2 + 3)− 1,
z2 − 2 + x1 + 1 ≥ (z3 − 3 + 3)− 1,

. . . ,
zr−1 − (r − 1) + x1 + 1 ≥ (zr − r + 3)− 1,

zr − r + x1 + 1 = n− 1.
Here the last equality is not analogous to the previous equalities but follows because sequence

x1, x2, . . . , xn is tree-like and 1 = xr+1 = · · · = xn. Since 2 ≤ p ≤ n− 1, there exists s ≤ r such that

zs − s+ 3 ≤ p ≤ zs − s+ x1 + 1 ⇔ 1 ≤ a1 ≤ x1 − 1. QED
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