
Partitioning of a set into pieces of smaller diameter

A.M. Raigorodskii with V. Bulankina and M. Prasolov

1 Definitions and notations

Let the diameter of a set Ω on the plane be the quantity

diam Ω = sup
x,y∈Ω

|x− y|.

Here
|x− y| =

√
(x1 − y1)2 + (x2 − y2)2, x = (x1, x2), y = (y1, y2),

i.e. this is ordinary “Euclidian” distance between points on the plane. The symbol “sup” means “supremum”
(least upper bound), and it is convenient to suppose that “sup” means maximum. Essentially, diameter of a set
is a maximal distance between its points. Why do we write not well known supremum nevertheless? Because
there exist sets without a pair of points with maximal distance between them. For example, a disc without its
boundary (remove its bounding circle). Never mind though. We consider only “closed” sets (which contain their
boundary), so supremum is not necessary.

Consider an arbitrary bounded set Ω. We can suppose that diam Ω = 1 (zoom in or zoom out the set using
homothetic transformation to obtain the desired diameter). We aim to sparingly dissect Ω into pieces of smaller
diameter. In other words, we aim to represent Ω in the form

Ω = Ω1 ∪ . . . ∪ Ωf

under the condition diam Ωi < diam Ω for all i and we aim to minimize f . You can imagine Ω as some crooked
cake which does not go through our mouth as a whole but which we desire to eat greedily, to bite the least number
of times. And so we should dissect a cake into pieces such that number of these pieces is the least and each piece
fits in the mouth still.

The main question: which cake is the worse in the sense of the above-described problem about dissecting? In
other words, into how much pieces can we dissect any cake deliberately?

K.Borsuk in 1933 formalized the problem described above: what is the least number f(2) such that any
bounded set Ω on the plane admits a partition into f(2) parts of smaller diameter? Of course, Borsuk was not
reflecting about crooked cakes and even topology served as the motivation for his research. More detailed and, by
the way, more intriguing history of the problem can be found in [1].

One more question: why do we write f(2)? The answer is that the plane is two-dimensional. In the truth,
Borsuk raised a similar problem on the real axis too (corresponding quantity is f(1)), and in space of any dimension
also. Usually the space of dimension n is denoted by Rn. In particular, R1 = R is the real axis, R2 is the plane, R3

is the space in common sense, i.e. 3-dimensional space in which we live. In general case f(n) is a Borsuk number,
which is the least f , such that any bounded set in Rn can be dissected into f pieces of smaller diameter, but there
exists a bounded set in Rn, which cannot be disssected into f − 1 pieces of smaller diameter. Here the distance
between points in Rn is standard ( is measured “by Euclid”):

|x− y| =
√

(x1 − y1)2 + . . .+ (xn − yn)2, x = (x1, . . . , xn), y = (y1, . . . , yn).

Borsuk supposed that f(n) = n + 1. This supposition is called the Borsuk conjecture. This conjecture was
disproved in 1993 (see [1], [2]), but it remains a great amount of questions without answers still.

In the following section we introduce the problems. Step by step you approach the interesting problems in
which an advance can be done by elementary methods.

2 Problems before intermediate finish

Problem 1. Prove that f(1) = 2.
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Problem 2. Prove that f(2) > 3. In other words, give an example of a set on the plane which cannot be
dissected into two pieces of smaller diameter.

Problem 3. Dissect a square into pieces of smaller diameter.

Problem 4. Dissect a disc of radius 1/2 into three pieces of smaller diameter.

Problem 5. Dissect a disc of radius 1/2 into three pieces of diameter not greater than
√

3
2 = 0.866...

Problem 6. Prove that the constant
√

3
2 from the problem 5 is unimprovable, i.e. for any partition of a disc of

radius 1/2 into 3 pieces at least one of those pieces has diameter not smaller than
√

3
2 .

Call by universal cover in Rn such set Ω that any set Φ of unit diameter can be moved into Ω, i.e. it is possible
to cover Φ by Ω. For instance:

Problem 7. Prove that a unit square is a universal cover on the plane.

Problem 8. Prove that a unit cube is a universal cover in the space of any dimension. Here we call by unit
cube a set of points x = (x1, . . . , xn), such that xi ∈ [0, 1] for all i.

It is known that a regular hexagon Ω6 with distance 1 between its parallel sides is a universal cover on the
plane. For detailed proof see [3]. However, you may reflect on it.

Problem 9. Dissect the regular hexagon Ω6 into three parts of diameter
√

3
2 . Deduce from this problem the

validity of the Borsuk conjecture on the plane and, in some sense, “unimprovability” of the constant
√

3
2 from the

problem 6.

Problem 10. What number plays the role of unimprovable constant from the problem 9 on the real axis?

Problem 11. Prove that in any set of n points on the plane there are at most n pairs of points such that the
distance between them equals the diameter of the set.

Problem 12. Deduce form the problem 11 the validity of the Borsuk conjecture for finite sets on the plane
(not involving universal covers).

Problem 13∗. Prove that a disc of radius 1√
3

is a universal cover on the plane.

Problem 14. Explain why a disc of radius r < 1√
3

cannot be a universal cover.

Problem 15. Explain why the result of the problem 13∗ does not allow to prove the Borsuk conjecture on the
plane.

Problem 16. A disc B1 of raduis 1√
3

is given on the plane. Choose an arbitrary point on its boundary and
consider the disc B2 of radius 1 with center in chosen point. Prove that B1 ∩B2 is a universal cover on the plane.

Problem 17. Using the result of the problem 16 prove the Borsuk conjecture.

Problem 18∗ (research). Is it possible to prove using the result of the problem 16 that any set of diameter
1 can be dissected into three pieces of diameter 6

√
3

2 ? What is the least such constant that you obtained?

Call by univesal covering system (ucs) in Rn such collection of sets {Sα}, that any Ω ⊂ Rn, diam Ω = 1, can
be moved into at least one of the sets Sα.
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Problem 19. Consider the regular hexagon Ω6 with distance 1 between parallel sides. Consider a segment
connecting the center of hexagon with one of its vertices and draw a line perpendicular to this segment at the
distance 1/2 from the center. This line cuts off a triangle from the hexagon. Prove that the hexagon without
mentioned triangle also is a universal cover on the plane. This truncated hexagon is denoted by Ω′6 on the picture
1.

Problem 20. Prove that the middle and the regular hexagons form ucs. Triangles, as in the problem 19, are
cut off by the lines at the distance 1/2 from the hexagon center and perpendicular to the segments connecting the
center with corresponding vertices.

Picture 1: Examples of ucs.

Problem 21. Prove that any set of diameter 1 on the plane can be dissected into 5 pieces without a pair of
points at the distance 1√

3
. Hint. Use Ω6.

Problem 22∗ (research). Is it possible to prove that for some a < 1√
3

any set of diameter 1 on the plane can
be dissected into 5 pieces without a pair of points at the distance a?

Problem 23. Find such n, that any set on the plane can be dissected into n pieces without a pair of points at
the distance 1. What is the least n that you found?

Problem 24∗. Prove that any set of diameter 1 on the plane can be dissected into 6 pieces of diameter not

greater than
√

13
3 (2−

√
3) = 0.5577... Hint. Use ucs {Ω6,1,Ω6,2}.

Problem 25∗∗. Even better than in the problem 24∗?

Problem 26∗. Prove that any set of diameter 1 on the plane can be dissected into 5 pieces of diameter not
greater than 0.603. Hint. Use the universal cover Ω′6.

Problem 27∗∗. And even beter than in the problem 26∗?

Problem 28. Prove that any set of diameter 1 on the plane can be dissected into 4 pieces of diameter not
greater than 1√

2
.

Problem 29. Prove the unimprovability of the result of the problem 28.

Problem 30. Prove that any set of diameter 1 on the plane can be dissected into 7 pieces of diameter not
greater than 1

2 .

Problem 31. Prove the unimprovability of the result of the problem 30.
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3 Problems after intermediate finish

Problem 32. Prove that f(3) > 4.

Problem 33∗. Prove that a ball with radius
√

3
8 is a universal cover in R3.

Problem 34. Explain why a ball of radius r <
√

3
8 cannot be a universal cover in R3.

Problem 35. Split a ball of radius 1/2 into four pieces of smaller diameter in the space (i.e. diameter of each
piece must be smaller than 1).

Problem 36∗. Let regular tetrahedron be inscribed in the ball of radius 1/2. Let us consider 4 trihedral angles
which we can get if we connect the center of the ball with vertices of tetrahedron’s faces. Let us intersect each of
these angles with the ball. So we will have a partitioning of our ball into 4 equal pieces. Find diameters of these
pieces.

Problem 37. Let us define regular simplex in Rn as an analog of regular triangle on the plane and regular
tetrahedron in the space. Notably let us consider n+ 1 points x1, . . . ,xn+1 in Rn such that |xi−xj | = a for every
pairs i 6= j and some a > 0. Prove the existence of the simplex.

Problem 38∗. Let us define n-dimensional ball as a set

B = {x = (x1, . . . , xn) : x2
1 + . . .+ x2

n 6 1}.

It is a ball with radius 1 and with diameter 2. Let us inscribe the regular simplex in this ball. Find the length of
the side of this simplex.

Problem 39∗∗. Let us realize partitioning of the ball from the problem 38∗ like partitioning from the problem
36∗. Notably let us inscribe a regular simplex whose sides’ length was found in problem 38∗ in our ball and let us
consider such polyhedral angles which have a vertex in the center of our ball and pass through the simplex faces
(there are n+ 1 faces of simplex). Find diameters of obtained pieces. In particular ascertain that they are smaller
than 2 and also that their values tend to 2 with n→∞.

Problem 40. Let us intersect the ball B1 of radius
√

3
8 with any ball B2 of radius 1 whose center lies on the

border of the ball B1. Prove that B1 ∩B2 is a universal cover in R3.

Problem 41∗. Prove that B1 ∩B2 can be split into 5 pieces of diameter smaller than 1.

Problem 42. Prove that f(4) > 5. Also in the general case f(n) > n+ 1.

Problem 43. Find any upper bound for f(4).

Problem 44. Find any upper bound for f(n).

Problem 45. Construct a cover in R4, like covers from the problem 40 of this list and also the problem 16 from
the list of problems before the intermediate finish.

Problem 46∗. Prove that the cover from the problem 45 can be split into 9 pieces of diameter smaller than 1
and so f(4) 6 9.

4



4 Solutions

When solving the problems of the project, some of the school participants have obtained brilliant and unex-
pected results. First of all, it is worth making special mention of a result by Egor Voronetskiy who succeeded
in improving all the previously known upper bounds for the minimum value of a forbidden distance between any
two monochromatic points in a colouring of an arbitrary planar set of diameter 1 with four and five colours. If
the previous bounds were by the values 1√

2
and 1√

3
, then now, due to Egor, we have bounds by the values 1√

3

and 1−
√

3+
√

6
√

3

4
√

3−2
. Egor’s constructions are given below. Also we want to say about a new upper bound for the

minimum diameter in a partitioning of an arbitrary planar set of diameter 1 into six parts. This bound was
independently obtained by Dima Belov with Nikita Aleksandrov and by How Si Wei. If the previous bound had
a value 0.557 . . ., then the current bound equals 0.542 . . . Below, we also present these constructions. At the same
time, some school participants have shown a very high mathematical culture: they managed to carefully calculate
the diameters of parts in a dissection of the n-dimensional unit ball into n+ 1 parts (problem 8∗∗ from the second
part of the project); they also managed to give a proof of a theorem by M. Lassak, which was published in 1982
and which asserts that any set of diameter 1 in Rn can be partitioned into 2n−1 + 1 pieces of diameter < 1. Both
the dissection of the unit ball and the proof of Lassak’s theorem were done by Egor Voronetskiy and Maksim
Didin.

1. It is obvious that f(1) > 1. It is sufficient to dissect the segment into 2 pieces with smaller diameter as long
as for any set with diameter 1 on the line we can put it in the segment with length 1. For example we can dissect
our segment in halves.

2. It is equilateral triangle for example.

3. We can do it with one vertical section for example.

5. We can cut our circle by three radii, with angles of 120◦ between them.

6. Let our circle be dissected into three pieces. Let us take a point on the boundary of our circle so that it lies
in two of these pieces. And let us construct an equilateral triangle with one vertex at our point and other vertices
on the boundary of our circle. Then two vertices of this triangle are in the same piece. So the diameter of this
piece is not less than

√
3

2 .

8. It is obvious that the set Ω with diameter 1 is in stripe min
x∈Ω

xi 6 xi 6 max
x∈Ω

xi with width at most 1. Intersection

of such stripes for all i is a parallelepiped. We can cover it by the unit cube.

9. Dissect the regular hexagon into three pieces by perpendiculars from the center to not adjacent sides. The
diameter of each piece equals

√
3

2 . Then place the set Ω of diameter 1 into Ω6. The partition of Ω6 provides the
partition of Ω into the pieces of diameter at most

√
3

2 < 1. And as we know from the problem 6, the constant
√

3
2

is unimprovable in the case of the circle of diameter 1.

10. Any set of diameter 1 on the line can be dissected into two pieces of diameter 1
2 but the unit segment cannot

be dissected into two parts of diameter smaller than 1
2 .

11. Connect by edges all pairs of points at the distance 1. If every point is incident to at most two edges then
we have at most n edges. So consider a triple of edges with common end. Since the distance between points is at
most 1, the angle between edges is at most 60◦.

Another end of the middle edge is incident only to this edge, since any two points are at the distance at most
1 (see pic.2). So erase the middle edge with its not common end and continue the proof by induction.

12. It is sufficient to paint in three colours the vertices of the graph from the previous problem. Do it by
induction. Suppose you have a vertex v with only one edge incident to it. Erase v, colour the rest graph by
induction and then paint v not in the colour of its neighbour. In other cases the graph is a collection of cycles.
Paint them in three colours.
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Picture 2: Three edges with common end.

13. The first solution. Place the set Ω of diameter 1 into a large disc B. Then reduce this disc in such a way that
it always contains Ω and once some points appear on the boundary of B they continue to lie there. We cannot
reduce the disc if one of two cases occurs:

1) ends of some diameter of B belong to Ω, so the diameter of B is not greater than 1;
2) some three points of Ω lie on the boundary of B and form an acute-angled triangle, it is well-known that in

this case the diameter of B is not greater than 1√
3
.

The second solution. Since the regular hexagon inscribed in the circle is a universal cover, this is a universal
cover also.

14. Suppose that the equilateral triangle with the side 1 is contained in a disc with radius r, then reduce this
disc as in the solution of the previuos problem. In the end we obtain the circumscribed disc about the triangle.

So r >
√

1
3 .

15. By the problem 6 if the disc with radius 1√
3

is dissected into three parts then the diameter of some part is
at least 1.

16. By the problem 13 we can place any set Ω of diameter 1 into the circle B1 with radius 1√
3
. Then translate

this set so that the point X ∈ Ω appears on the boundary of the circle but Ω continues to lie in B1. Draw a circle
B2 with radius 1 and center X. Since the diameter of Ω equals 1, B2 covers Ω also. So the intersection B1 ∩ B2

covers Ω.

17. The universal cover from the problem 16 can be dissected into three parts of diameter c =
√

3
2 +

√
2√
3
−1

2 < 1.
We see on the picture that O1 is the center of circle with radius 1√

3
, O2 is the center of the circle with radius 1,

B is the middle of the arc with unit radius and points A and C are chosen in such a way that the triangle ABC

is equilateral. It is easy to compute that its side equals
√

3
2 +

√
2√
3
−1

2 .

O
1

O
2

A

B

C

Picture 3: The partition of the universal cover from the problem 16.

After that the Borsuk conjecture can be proved in a similar way as in the problem 9.

18. Let us prove that B1 ∩ B2 cannot be dissected into three parts of diameter smaller than c which is defined
in the solution of the previous problem.
Lemma. For every point X on the boundary of B1 ∩B2 there exists an equilateral triangle whose vertices belong
to the boundary of B1 ∩B2 and one of them is X. Also the side of such triangle is not shorter than c.
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Proof. Rotate the boundary of B1 ∩ B2 about X by 60 degree clockwise and counter-clockwise. Intersect the
image under rotation with boundary of B1 ∩ B2. Intersection points are the vertices of the equilateral triangle.
Exatly one of them lies on the arc with radius 1: if no points lie on this arc then we have an inscribed angle < 60◦,
and if two points lie on this arc — < 60◦. On the picture there are O1 — the center of the circle with radius 1√

3
,

O2 — the center of the circle with radius 1, ABC — the equilateral triangle, where vertex B lies on the arc with
radius 1.

O
1

O
2

O
3

A

BC

Picture 4: A equilateral triangle on the boundary of the universal cover from the problem 16.

Rotate the circle with center O1 about A by 60◦. Denote by O3 its center. Clearly points O1 and B lie on
the circle with center O3, i.e. O3A = O3B = 1√

3
. Therefore, AB decreases if the angle AO3B decreases. But

BO3O1 = 60◦. So the angle AO3B decreases as the angle O1O3B decreases. Also O3O1 = O3B = 1√
3
. So the

angle O1O3B decreases as O1B decreases. O1B is minimal if B is the middle of the arc with radius 1. Therefore,
AB > c.

Return to the proof of the initial problem. Suppose B1 ∩B2 is dissected into three parts. Consider the point
X on the boundary which belongs to 2 parts. Apply lemma to point X. In the triangle from lemma some two
vertices belong to the same part, i.e. the distance between them is at least c. Therefore the diameter of this part
is at least c.

19. Consider two small triangles that lie in the opposite vertices of the hexagon. The distance between any two
points of these triangles is at least 1. So, if a set of diameter 1 lies within the hexagon then one of these triangles
can be cut off without touching the set.

20. Continuing the proof of the previuos problem we can cut off a triangle in every pair of opposite triangles
without touching the set. So we obtain one of the hexagons on the picture.

21. Solution is given by the participant of the conference Egor Voronetskii. It is sufficient to dissect the regular
hexagon with the length of the side 1√

3
. However it can be dissected into 4 parts!

In the center of the picture the Reuleaux triangle of diameter 1√
3

is placed. It is easy to compute that AB = 1√
3
.

Colour the arc CD in green, but the vertex C — in blue. Colour arcs AC and BC in blue, but vertices A and B
— in red and yellow respectively. Colours of other arcs and vertices are defined using the rotation by 120◦.

22. Solution is given by the participant of the conference Egor Voronetskii.
Dissect the hexagon similarly to the previous problem, but the diameter of the Reuleaux triangle equals AB

in this case (see pic.6).
We change color only in the interior of the blue part. Other points keep their color.

23. This problem is equivalent to the problem about the chromatic number of the plane which is unsolved. It is
known only how to paint the plane in 7 colours: hexagons of regular hexagonal lattice can be painted in 7 colours
in such a way that adjacent hexagons are of different colour.

24. Let σ =
√

13
3

(
2−
√

3
)
. We will dissect hexagons Ω6,1 and Ω6,2 into 6 pieces of diameter not greater than σ.

By the problem 20 it is sufficient for the proof.
Let us start with hexagon Ω6,1.
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A

B

C

D

Picture 5: There are no points of the same colour at the distance 1√
3

A

B

Picture 6: There are no points of the same colour at the distance 1−
√

3+
√

6
√

3

4
√

3−2
.

Suppose that Ω6,1 is obtained from the regular hexagon ABCDEF by cutting triangles BB1B2, DD1D2 and
FF1F2. Let M1, . . . , M6 be the middle points of the sides and O be the center (see pic. 7). Consider segments
AX,CY,EZ of length 1/2 on rays AO,CO,EO and draw segments OX,OY,OZ. Then connect all points X,Y, Z
with two sides of the hexagon (see pic.7). So we obtain a partition of Ω6,1 into six polygons OXM1B2B1M2Y ,
AM1XM6 etc.

Their diameters are not greater than σ.
Indeed, AX = M1M6 = 1

2 . Therefore the diameter of quadrilateral AM1XM6 equals 1
2 . The diameter of

7-gon OXM1B1B2M2Y equals OB1 = 1
2 cos π

12
≈ 0.5176. Other diameters can be obtained from these two ones by

rotation of the picture.
Now dissect the hexagon Ω6,2 in the following way.
Suppose that Ω6,2 is obtained from the hexagon ABCDEF by cutting triangles AA1A2, BB1B2 and FF1F2

(see pic. 8). Let M be the middle of A1A2, and J be the intersection of a midperpendicular to the segment A1C
with segment AD. Clearly JA1 = JC.

Draw lines parallel to diagonals BE and CF through the point J . Suppose these lines intersect Ω6,2 by
segments PQ and RS (see pic. 8). So we have Ω6,2 dissected into six polygons.

Let us check that their diameter is not greater than σ.
Note that JA1 = JC = σ.
Indeed, by Pythagorean theorem for triangles JMA1 and JM2C (the point M2 is the middle of BC) the
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Picture 8:

equality JA2
1 = JC2 is equivalent to(

OJ +
1
2

)2

+
(

tg π
12

2

)2

=
(

1
2

)2

+
(

1
2
√

3
−OJ

)2

,

so we obtain

OJ =
1− 3 tg2 π

12

4(3 +
√

3)
.

Now the length of the segment JA1 can be computed by Pythagorean theorem for the triangle JMA1.
It is not so difficult to compute that diameters of pentagons JMA1B2P and JPB1CR equal JA2 = JC = σ,

and diameter of the equilateral triangle JRD is less than σ. The partition is symmetric with respect to the line
MD. This finishes the proof.

25. Solution is given independently by two teams: Aleksandrov Nikita and Belov Dima, and How Si Wei.
Dissect elements of ucs. At first dissect the polygon on the picture 9. It is symmetric with respect to rotation

by 120◦ and BT =
√

2−
√

3. We have diameters of all parts equal
√

2−
√

3.
Then consider the picture 10. The point T lie on the diagonal AD and ST = TD. Also AA1 = EV = CU ′ =√

2−
√

3. The point W is chosen in such a way that W lies on V D and TW is parallel to CD. The point Z can
be defined in similar way. Points M ′, N, P ′, Q′,K and L′ are bases of perpendiculars dropped from the point T .
After some computations we see that diameters of all parts are at most TD = 10−4

√
3

5
√

3−3
≈ 0, 5427.
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Picture 9: Diameters of all parts equal
√

2−
√

3.

Picture 10: Diameters of all parts are at most TD.

26. Dissect Ω′6 into five sets in the following way.
Consider points X, Y , Z and T on the sides BC, CD, DE EF respectively such that all sides of the pentagon

MXY ZT are equal (see pic. 11).
Clearly this can be done in the unique way.
Denote the length of the segment MX by ρ′5. It is easy to compute that ρ′5 = 0.6020 . . ..
Connect the point O with all vertices of MXY ZT . So Ω′6 is dissected.
Obviously the distance between the point O and arbitrary point on the boundary of Ω′6 is not greater than

1√
3
< ρ′5. Therefore parts of the partition have diameter ρ′5.

27. ?

28. By the problem 7 the partition of the unit square into 4 parts of diameter 1√
2

is sufficient. Draw the
diagonals.

29. Let us prove that the circle of diameter 1 cannot be dissected into four pieces. Suppose the contrary. Let
us take a point on the boundary of our circle so that it lies in two of these pieces. And let us construct a square
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Picture 11:

with one vertex at our point and other vertices on the boundary of our circle. Then two vertices of this square

are in the same piece. So the diameter of this piece is not less than
√

1
2 .

30. Since the regular hexagon with side 1√
3

is a univeral cover, its partition into 7 parts of diameter 1
2 is sufficient

(see pic.12)

Picture 12: the maximal diagonals of the hexagon and pentagons equal 1
2 .

31. Let us prove that the circle of diameter 1 cannot be dissected into seven pieces. Suppose the contrary. Let
us take a point on the boundary of our circle so that it lies in two of these pieces. And let us construct a regular
hexagon with one vertex at our point and other vertices on the boundary of our circle. Then two vertices of this
hexagon are in the same piece. So the diameter of this piece is not less than 1

2 .

32. The regular tetrahedron cannot be dissected into three pieces of smaller diameter, because its vertices must
lie in different pieces.

33. The solution is similar to the first solution of the problem 13. Place the set Ω of diameter 1 into a large ball
B. Then reduce this ball in such a way that it always contains Ω and once some points appear on the boundary
of B they continue to lie there. We cannot reduce the ball if one of three cases occurs:

1) ends of some diameter of B belong to Ω, so the diameter of B is not greater than 1;
2) some three points of Ω lie on the equator of B and form an acute-angled triangle, in this case the diameter

of B is not greater than 1√
3
;

3) some four points of Ω lie on the boundary of B and form tetrahedron which contains the center of B.
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It is sufficient to prove that in the third case the radius of the ball is not greater than
√

3
8 . This follows from

the lemma.
Lemma. Suppose a tetrahedron T is inscribed into a unit sphere and contains the center of the sphere. Then

some side of T is not shorter than
√

8
3 . Suppose additionaly that T is regular. Then its sides equal

√
8
3 .

Proof. Let O be the center of the sphere and A,B,C,D be vertices of T . T contains O, therefore

a ·
−→
OA+ b ·

−−→
OB + c ·

−−→
OC + d ·

−−→
OD =

−→
0

for some positive numbers a, b, c, d. Let a be the maximal number among them. Consider the inner product of
vector

−→
OA with both parts of this equality:

a ·
−→
OA ·

−→
OA+ b ·

−−→
OB ·

−→
OA+ c ·

−−→
OC ·

−→
OA+ d ·

−−→
OD ·

−→
OA = 0.

Number a is maximal, so
−→
OA ·

−−→
OX < −1

3

−→
OA ·

−→
OA where X = B,C or D. Without loss of generality X = B. By

cosine law AB >
√

8
3 since OA = OB = 1. The inequality is exact in the case of the regular tetrahedron.

34. Suppose that the regular tetrahedron with the side 1 is contained in a ball with radius r, then reduce this
ball as in the solution of the previuos problem. In the end we obtain the circumscribed ball about the tetrahedron.

So r >
√

3
8 .

36. Let A1, A2, A3, A4 be the vertices of the tetrahedron and O be its center. Consider the piece associated to
the trihedral angle OA1A2A3. Let B be the middle of A2A3. Draw the radius OB. Denote by C its end lying on
the sphere. The statement is that the diameter equals the length of A1C. We leave the proof of this fact to the
reader.

By the previous problem a side of the tetrahedron equals
√

2
3 . By the Pythagorean theorem for triangles

A1BA2 and OBA2 obtain that |A1B| =
√

1
2 and |OB| =

√
1
12 . By the cosine law a cosine of the angle A1OB

equals −
√

1
3 .

By the cosine law for triangle A1OC, obtain that

|A1C| =

√
3 +
√

3
6

≈ 0.888... < 1.

37. n points which have one unit coordinate and whose all other coordinates are zero form a regular simplex in
the plane x1 + x2 + · · ·+ xn = 1.

39. Recall some geometric notions. The inner product of vectors x = (x1, x2) and y = (y1, y2) is a number
(x,y) = x1y1 + x2y2. The distance |x− y| between points x,y is measured by formula

|x− y|2 = (x,x) + (y,y)− 2(x,y). (1)

Notation (x,x) is called the inner square of the vector x. It represents a square of the length |x| of this vector.
The cosine of the angle between the vectors x,y can be computed by formula (x,y)

|x|·|y| . So the equality (1) is just
the cosine law:

|x− y|2 = |x|2 + |y|2 − 2|x| · |y| · cos ˆ(x,y). (1′)

Say the same about Rd. The inner product of vectors x = (x1, . . . , xd), y = (y1, . . . , yd) equals

(x,y) = x1y1 + . . .+ xdyd.

Let us compute the diameter of the part D associated to the vertices x1, . . . ,xd of the simplex T . Clearly
x1 + . . .+ xd+1 = 0 (see two- and three-dimensinal cases). Therefore

(x1,xi) + . . .+ (xd+1,xi) = (0,xi) = 0

for each i. Since |x1| = . . . = |xd+1| = 1 (all vertices of T lie on the unit sphere), we obtain that (xi,xi) = 1.
Finally by symmetry all angles ˆ(xj ,xi) for i 6= j are the same. Hence for i 6= j we obtain that

0 = (x1,xi) + . . .+ (xd+1,xi) = 1 + d(xj ,xi),
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i.e. (xj ,xi) = −1
d . for all i 6= j

By the last observation and the cosine law (the equality (1′))

|xi − xj |2 = 1 + 1− 2 · 1 · 1 ·
(
−1
d

)
= 2 +

2
d
, |xi − xj | =

√
2d+ 2
d

.

In particular, substituting d = 2 or d = 3 we get
√

3 or 2
√

2
3

Return to the diameter computing. We have two cases: d = 2k and d = 2k − 1.

Case 1. Consider the points ξ = x1 + . . .+ xk and η = xk+1 + . . .+ x2k. These points do not belong to D if k > 1
but have some interest. So

cos ˆ(ξ, η) =
(x1 + . . .+ xk,xk+1 + . . .+ x2k)
|x1 + . . .+ xk| · |xk+1 + . . .+ x2k|

=
(x1 + . . .+ xk,xk+1 + . . .+ x2k)

|x1 + . . .+ xk|2
.

The numerator in the last expression (after expansion) is a sum of k2 summands of the form (xi,xj) for all i and
j. Therefore, numerator equals k2 ·

(
− 1

2k

)
= −k

2 . Rewrite the denominator:

|x1 + . . .+ xk|2 = |x1|2 + . . .+ |xk|2 +
∑
i 6=j

(xi,xj) = k + k · (k − 1) ·
(
− 1

2k

)
= k − k − 1

2
=
k + 1

2
.

Finally

cos ˆ(ξ, η) = − k

k + 1
.

Now consider ξ′ = ξ
|ξ| , η

′ = η
|η| . These points lie on the sphere and belong to the set D. By the cosine law the

distance between them equals the quantity

|ξ′ − η′| =
√
|ξ′|2 + |η′|2 − 2 · |ξ′| · |η′| · cos ˆ(ξ′, η′) =

√
2− 2 cos ˆ(ξ, η) =

√
2 +

2k
k + 1

.

In the case 1 we found the diameter. Note that if k = 1 (i.e. in the second dimension) then ξ′ = x1, η′ = x2,
i.e. in fact the diameter equals the side of T . However, if k > 1 the length of the side equals√

4k + 2
2k

=

√
2 +

1
k
<

√
2 +

2k
k + 1

.

The length of the side tends to
√

2 with growth of k but the diameter of D tends even to 2, i.e. the diameter of
the sphere.

Case 2. Consider the points ξ = x1 + . . .+ xk η = xk+1 + . . .+ x2k−1. Similarly to the case 1 we obtain that

cos ˆ(ξ, η) = −
√
k − 1
k + 1

.

Again consider ξ′ = ξ
|ξ| ∈ D, η′ = η

|η| ∈ D, and finally

|ξ′ − η′| =

√
2 + 2

√
k − 1
k + 1

.

In the case k = 2 (i.e. if d = 3) we get√
2 + 2

√
k − 1
k + 1

=

√
2 + 2

√
1
3

=

√
2 +

2
√

3
3

=

√
2 · 3 +

√
3

3
= 2

√
3 +
√

3
6

.

It is the same as in the problem 36! Clearly, points ξ′ and η′ are points C and A1 respectively in the notations of
the problem 36. Here we have such (expected) analogy.

40. By the problem 33 we can place any set Ω of diameter 1 into the ball B1 with radius
√

3
8 . Then translate

this set so that the point X ∈ Ω appears on the boundary of the circle but Ω continues to lie in B1. Draw a ball
B2 with radius 1 and center X. Since the diameter of Ω equals 1, B2 covers Ω also. So the intersection B1 ∩ B2

covers Ω.
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41. Suppose that the center of B2 is the highest point of B1. Cut off the little hat from B1 ∩B2 from above by
horizontal plane. Dissect the rest of B1 ∩ B2 into 4 parts by the planes parallel to other coordinate planes. The
diameter of each part is less than 1.

42. The regular simplex cannot be dissected into n+1 parts of smaller diameter.

44. A set of unit diameter can be placed into the unit cube. So it is sufficient to dissect the cube into parts of
diameter less than 1. Cover the unit cube by ([

√
n] + 1)n small cubes whose sides are quite smaller than 1√

n
. The

main diagonal of each small cube is quite smaller than 1. Therefore f(n) 6 ([
√
n] + 1)n.

45. By the solution of the problem 37 the radius of the subscribed sphere about a unit simplex in R4 equals√
2
5 . Similarly to the solution of the problem 33 the ball B1 of radius

√
2
5 is a universal cover in R4. Similarly to

the problem 40 the intersection of the ball B1 with the unit ball (whose center lies on the boundary of B1) is a
universal cover in R4 also.

46. Similarly to the solution of the problem 41 cut off the small hat by horizontal plane, and dissect the rest by
three other coordinate plans into 8 parts.
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