
TROPICAL GEOMETRY

F. Nilov, A. Skopenkov, M. Skopenkov and A. Zaslavsky

A brief overview. 6

Hilbert’s 16th problem asks what could be the number and mutual arrangement of curves which form
the subset of the plane given by an equation

∑

i+j≤d

aijx
iyj = 0. A more accurate statement and examples

are given in part A. 7 The aim of this series of problems is to outline an approach to the ”existence” part
of Hilbert’s 16th problem for d = 6 (see Main Theorem below).

It is not easy to determine the number and mutual arrangement of curves for the subset of the plane
given by a polynomial in two variables with certain concrete coefficients (even using a modern computer).
While solving the problems of part B you will find the statement of main lemma which allows to do
it for polynomials of certain specific type. You will see how tropical geometry appears naturally while
drawing of subsets given by the equations of type

∑

i+j≤d

(aijx
iyj)N = 0, where N is a large odd number.

Using tropical geometry you will be able to construct such subsets with distinct mutual arrangement of
ovals.

Figure 1.

The basic ideas of tropical geometry are elementary. Replace multiplication by
addition, and addition by an operation related to addition via the same distributive
law, like multiplication is related to addition. As such an operation one can take
maximum max{a, b} of the pair of numbers a and b. Under this transformation
the function

∑

i+j≤d

bijx
iyj = 0 transforms to the function (check it!): f(x, y) =

max
i+j≤d

(ix + jy + bij). The set of ”break points” of the function is called the tropical

curve.

For instance, a line in the plane is given by the equation Ax+By +C = 0. Left
part of this equation turns to the function f(x, y) = max{x+a, y + b, c} under our
transformation. the set of ”break” points of the function f(x, y) looks like shown in
figure 1 (check it!). This way the tropical line is defined. Tropical lines have many properties of Euclidean
lines. Part C of the project deals with ”experimental” investigation of these properties.

A. Examples of algebraic curves.

Figure 2.

A polynomial (in two variables) is a function F : R
2 → R for which there exist

numbers d and aij , 0 ≤ i, j ≤ d, such that F (x, y) =
∑

i+j≤d

aijx
iyj. You can use

without proof the following non-trivial fact: for given function F such numbers are
unique up to increasing d and taking all the new aij to be zeroes.

The zero set of the polynomial F is F−1(0) := {(x, y) ∈ R
2 | F (x, y) = 0}.

A1. Is F uniquely determined by F−1(0)?

A2. Which of the following sets are zero sets of polynomials?
(a) a line; (b) a circle; (c) a point; (d) a segment; (e) the union of 2

lines;
(f) the ”pig” (union of 6 circles) in figure 2.

The degree of a polynomial is the least possible d for which there exist the required aij. (The degree
is the maximal d such that ai,d−i 6= 0 for some representation of the polynomial and for some number i.)

A3. (a) How many points there could be in the intersection of the zero set of a polynomial of degree
d and a line?

(b) The zero set of a polynomial of odd degree is unbounded (i.e. is not contained in a disk).

6Do not worry if you do not understand something in this brief overview. You can omit it and start solving problems
from either part A or part C.

7For d ≤ 5 the answer was known as early as in 19th century. Hilbert stated his problem for d = 6. The solution for
this case was obtained by Gudkov. For d = 7 the problem was solved by Viro using methods of tropical geometry. For
d ≥ 8 the problem is open.
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A polynomial F is reducible, if F = G · H for some polynomials G and H .

Curves8. A function γ : [a, b] → R is differentiable at the point t0, if for some number A and any ε > 0
there exist δ such that for any

t ∈ (t0 − δ, t0 + δ) we have |γ(t) − γ(t0) − A(t − t0)| < ε|t − t0|.

A map γ : [a, b] → R
2 can be considered as an ordered pair of functions γ1, γ2 : [a, b] → R. A map γ : [a, b] → R

2

is differentiable if both functions γ1, γ2 are differentiable.

A (smooth) curve in the plane is a differentiable map γ : R → R
2 (or γ : [a, b] → R

2).

In problems A4.cfg and A7 you only need to give an example of a polynomial; proving its properties
is not required.

A4. (a) There is an irreducible polynomial of degree 3 whose zero set contains a closed curve.
(b) The same for degree 4.
(c) There is an irreducible polynomial of degree 4 whose zero set consists of two closed curves one

inside the other.
(d) If the zero set of a polynomial of degree 4 contains two closed curves one inside the other, then

the zero set contains no other points.
(e) Is the analogue of (d) correct for an irreducible polynomial of degree 5?
(f) There is a polynomial of degree 4 whose zero set contains 4 closed curves.
(g) There is a polynomial of degree 4 whose zero set contains 3 closed curves.

Ovals . Connected components of the zero set of a polynomial are called branches. (Existence of unbounded
branches makes the investigation of zero sets harder.) For an unbounded branch B the lines joining the origin
O with the points of B have a ”limit” line. Two unbounded branches are elementary equivalent if their ”limit”
lines coincide.

A5. The infinite branches of hyperbola xy = 1 are elementary equivalent.

Two infinite branches are equivalent if there is a sequence of branches joining them, in which sequence each
two consecutive branches are elementary equivalent. A zero set is nondegenerate if it is a disjoint union of smooth
curves. An oval of a non-degenerate zero set of a polynomial is either a closed curve (contained in the zero set)
or an equivalence class of unbounded branches. (Note that this definition is different from the ”correct” one given
in textbooks.)

A6. Find all h such that the zero set is non-degenerate and find the number of ovals for the polynomial
(a) xy(x + y − 1) − h. (b) x3 − x + h − y2. (the answer could depend on h).

A7. There is a polynomial of degree 5 whose zero set is non-degenerate and consists of 7 ovals.

Hilbert’s 16th problem. What could be the number and mutual arrangement of ovals of a non-degenerate
zero set of a polynomial of degree d?

We do not assign any formal meaning to the words ’mutual arrangement’. Such a meaning can be assigned,
but requires projectivization of a polynomial.

Main Theorem. (a) There is a polynomial of degree 6 whose zero set is non-degenerate and consists of 11
ovals.

(b) There are three polynomials of degree 6 each whose zero sets are non-degenerate and consist of 11 ovals
each, with different mutual arrangement of ovals.

B. Tropical curve as a limit of algebraic curves.

B1. Draw the zero sets of
(a) x − y − 1; (a’) x1001 − y1001 − 1;
(b) x + y − 1; (b’) x1001 + y1001 − 1;
(c) xy = x + y; (c’) x1001y1001 = x1001 + y1001;
(d) x2 + y2 − 4x − 4y − 2 = 0; (d’) x2002 + y2002 − 41001x1001 − 41001y1001 − 21001;
(e’) x3003 + 21001x1001y2002 − 31001x1001y1001 + y2002 − x1001 − 21001.

Denote by

FN (x, y) =
∑

i+j≤d

(aijx
iyj)N

8These definitions are required only for the accurate proofs of problem A4.
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a family of polynomials depending on an odd number N ≥ 1. Under the transformation of variables
u = xN , v = yN each polynomial FN goes to the polynomial

∑

i+j≤d

aN
ij u

ivj of degree d. So for solution

of the Hilbert 16th problem it is worth to determine the number and mutual arrangement of ovals of
F−1

N (0).

B2. The number of ovals of F−1

N (0) can be different from that of F−1

1 (0).

Denote by BR the ball of radius R centered at 0.

B3. (a) For each ε, R > 0 there is N0 > 0 such that for each odd N > N0 the intersection of the zero
set of x2N − xN − yN with BR is contained in ε-neighborhood of the union of the lines x = 0, x = 1,
x = y and the parabola y = x2.

(b) For each ε, R > 0 there is N0 > 0 such that for each odd N > N0 the set F−1

N (0) ∩ BR is
contained in ε-neighborhood of the union of the zero sets of all the polynomials aijx

iyj − aklx
kyl, in

which (i, j) 6= (k, l), i + j ≤ d, k + l ≤ d.

Denote by R+ := [0, +∞) the set of positive numbers and by R
2
+ := [0, +∞)2 the angle defined by

the inequalities x > 0, y > 0. Define a map LOG : R
2
+ → R

2 by LOG(x, y) = (log2 x, log2 y).

B4. (abcde) Draw the LOG-image of the intersection with R
2
+ of the zero sets of polynomials

(a’b’c’d’e’) of B1.

A tropical polynomial is a function

f(x, y) := max
i+j≤d

(ix + jy + bij).

Let f pq = {(x, y) ∈ R
2 | f(x, y) = px + qy + bpq}.

The union of intersections of different f pq is a tropical curve. (This is the set of ”break points” of f .)
Assume further that all aij 6= 0 for i + j ≤ d. The tropical curve corresponds to the family of

polynomials FN , if bij = log2 |aij |. This definition is motivated by important problem B6b below.

B5. Draw the tropical curve corresponding to the family of polynomials
(a) (ax)N + (by)N + cN? (b) (ax2)N + (2bxy)N + (cy2)N? (the answer could depend on a, b, c.)

Denote by ∆R the triangle given by the inequalities x ≥ −R, y ≥ −R, x + y ≤ R.

B6. (a) For each ε, R > 0 there is N0 such that for N > N0 the intersection of the LOG-image of
the zero set of the polynomial x2N − xN − yN with the triangle ∆R is contained in ε-neighborhood of
the union of the ray y = 2x, x ≥ 0 and the ray x = 0, y ≥ 0.

(b) For each numbers {aij}i+j≤d and ε, R > 0 there is N0 > 0 such that for N > N0 the set
LOG(F−1

N (0) ∩ R
2
+) ∩ ∆R is contained in ε-neighborhood of the intersection of the tropical curve

corresponding to FN .

C. Tropical lines and circles.

This part of the project is an contest in art: it is suggested to check the theorems of tropical geometry
experimentally by drawing accurate figures. Selected figures will be exposed for public viewing. ”Problems” C1-
C10 are not graded (although for accurate statement and proving some of these assertions additional points would
be awarded). Ignore part of a ”problem” if you do not know the corresponding theorem of Euclidean geometry.
The whole part C of the project is not required for the solution of the Hilbert 16th problem and can be skipped.

Consider the plane with fixed Cartesian coordinate system. A tropical line (”leg”) is a union of three rays
with common origin (called the vertex), one of them going ”west”, the other going ”south” and the third going
”north-east”.

C1. There are different tropical lines intersecting at two different points.

Two points are in general position if the Euclidean line passing through these points is not parallel either to
coordinate axes or to the line x = y.

C2. (a) For each two points in general position there is a unique tropical line passing through these points.
(b) If the vertices of two tropical lines are in general position, then the lines have the only common point.

Two tropical lines are parallel if the vertex of one lies on the ”north-eastern” ray of the other.

C3. If a point A is in general position with the vertex of a tropical line b, then there is a unique tropical line
passing through A and parallel to b.
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Two tropical lines are perpendicular if the Euclidean lines containing their ”north-eastern” rays are symmetric
with respect to the line x = y.

C4. If a point A is in general position with the vertex of a tropical line b, then there is a unique tropical line
passing through A and perpendicular to b.

A tropical triangle (”spider”) is the union of three tropical lines whose vertices are (pairwise) in general
position.

C5. Draw figures to tropical analogues of the following theorems.
(a) The heights of a triangle intersect at a common point.
(b) the Pappus theorem.
(c) The Desargue theorem.
(d) The Sondat theorem.

For given points A and B a tropical circle (”heron”) is the set of points X for which there are orthogonal
tropical lines, one of them passing through A and X and the other passing through B and X. (Recall that there
could be different tropical lines passing through A and X.)

C6. (a) Draw a tropical circle. How does this set depend on A,B?
(b) Is it true that each tropical triangle has a circumscribed tropical circle?
(c) The Pascal theorem.

C7.* Define the tropical middle point of a tropical segment so that the tropical medians of a tropical triangle

would intersect in a common point.
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TROPICAL GEOMETRY

F. Nilov, A. Skopenkov, M. Skopenkov, A. Zaslavsky

The main problem’s complect consists of two parts: the end of Part B and a new part D. Problems
of part D use (except some explicitly indicated cases) neither notions nor results of previous parts of
the project. So one may solve these problems without taking part in previous parts.

B. The Viro patchworking theorem.

B3. For each ε, R > 0 there is N0 > 0 such that for each odd N > N0 the intersection of the zero
set of the polynomial

(c) x2N −xN − yN with the disk BR and with the first coordinate quarter (x > 0, y > 0) is contained
in the ε-neighborhood of the union of the sets

{(1, y) | 0 ≤ y ≤ 1}, 0 ≤ x = y ≤ 1 and y = x2 ≥ 1.

(d) x2N −xN −yN with the disk BR and with the second coordinate quarter (x < 0, y > 0) is contained
in the ε-neighborhood of the union of the set that is symmetric to the union from (c) w.r.t. Oy.

B7. State and prove the analogues of B3d for the third and the fourth coordinate quarters.

B8. The intersection of the zero set of the polynomial x2N − xN − yN with the third coordinate
quarter is empty.

B9. For each ε, R > 0 there is N0 > 0 such that for each odd N > N0 the intersection of the zero
set of the polynomial x2N − xN − yN with the disk BR and with

(a) the first coordinate quarter is contained in the ε-neighborhood of the union of the sets {(1, y) | 0 ≤
y ≤ 1} and y = x2 ≥ 1.

(b) the second coordinate quarter is contained in the ε-neighborhood of the union of the sets 0 ≤
−x = y ≤ 1 and y = x2 ≥ 1.

B10. State and prove the analogue of B9 for the fourth coordinate quarter.

Let us state the Viro patchworking theorem that allows to find the number and mutual arrangement
of ovals for certain special algebraic curves.

B11. Each tropical curve is a finite union of segments and rays.

Definition of the Viro curve and its ovals. Take the tropical curve corresponding to {aij}.
The tropical curve is a finite union of edges (segments and rays) that intersect at vertices (i.e. at
common points of edges). A face of the tropical curve is a connected component if its complement
in the plane. To each face there corresponds a pair (p, q) of integers such that px + qy + log2 |apq| =

max
i+j≤d, aij 6=0

(ix + jy + log2 |aij |) for points (x, y) of this face, and the sign of ap,q. In this definition we use

not {aij} but the tropical curve whose faces are marked with pairs of integers and signs.
Make a parallel transfer so that the vertices of the tropical curve would move into the angle x >

0, y > 0. Define Up,q,00 to be the image of the face of the tropical curve marked by (p, q) under this
parallel transfer. Let Up,q,01, Up,q,10 and Up,q,11 be the symmetric images of Up,q,00 under the symmetries
with respect to the x-axis, y-axis and (0, 0), respectively. Extend the given disposition of signs from
the first coordinate quarter to the whole plane as follows: under the symmetry of Upq w.r.t. the x-
axis the sign is multiplied by (−1)q, while under the symmetry of Uij w.r.t. the y-axis the sign is
multiplied by (−1)p. (Thus sgn Upq,st = (−1)ps+qt sgn Upq,00.) Define the Viro curve to be the union
∪{Uα ∩ Uβ | sgn Uα 6= sgn Uβ} of those edges of the tropical curve that split faces of different signs (see
Figure). Two unbounded connected components of the Viro curve are

• elementary equivalent if they contain rays symmetric w.r.t the origin (0, 0).
• equivalent if there is a sequence of components joining them, in which sequence each two consecutive

components are elementary equivalent.
An oval of the Viro curve is either a closed broken line contained in the Viro curve or an equivalence

class of unbounded connected components.
You can use the following theorem without proof:
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The Harnak Theorem. A non-degenerate zero set of a polynomial of degree d cannot have more

than
(d − 1)(d − 2)

2
+ 1 ovals.

B12.* The Viro patchworking theorem. Let the Viro curve assigned to the family of polynomials

FM =
∑

i+j≤d

(aijx
iyj)M with all aij 6= 0 contain exactly

(d − 1)(d − 2)

2
+ 1 ovals. Then there exist N

such that the zero set of the polynomial
∑

i+j≤d

aN
ij u

ivj is non-degenerate, and the number and mutual

arrangement of the ovals are the same as those of the corresponding Viro curve.

D. Construction of examples in the Hilbert 16th problem.

The aim of part D is to describe tropical curves using purely combinatorial method and to obtain a
purely combinatorial construction of examples in 16th Hilbert problem.

Let us recall that tropical curve of degree d is the set of ”break points” of graph of the function
max
i+j≤d

{ix + jy + bij} (see the details above, after problem B4).

D1. (a) Check that a tropical curve of degree 1 looks like picture 1. (Compare with the definition
of a tropical line in part C).

(b) Each vertex of a tropical curve is contained in at least 3 edges.

To any edge of a tropical curve assign its multiplicity as follows. Suppose that value ix + jy + bij is
maximal in one of faces bounded by this edge, and value i′x + j′y + bi′j′ is maximal in the other one. So
the line, which contains the given segment, has the equation (i − i′)x + (j − j′)y + (bij − bi′j′) = 0. We
define multiplicity of the given edge as the greatest common divisor of numbers i − i′ and j − j′.

In pictures we shall denote the multiplicate edges of a tropical curve with double (triple, and so on)
lines.

D2. Tropical curves of degree d have the following properties:
(a) The slope of any edge is a rational number.
(b) For any vertex the following balance condition holds. Denote by vi a vector beginning at the

given vertex parallel to i-th edge starting from the vertex, and equal to the shortest vector with integer
coordinates and given direction, multiplied by edge’s multiplicity. Then

∑

vi = 0.
(c) There are 3d infinite edges (counted with multiplicity), d of them are directed (strictly) to the

”west”, d — to the ”south” and d — to the ”north-east” with slope angle 45◦.

D3. (a) One may uniquely restorate a tropical polynomial max
i+j≤d

{ix + jy + bij} (up to adding a

constant) by its tropical curve.
(b) If the edges of a graph in the plane are segments and rays with given multiplicities, and the

conditions (a), (b), (c) of problem D2 are satisfied, then the graph is a tropical curve of degree d.

If two tropical curves have the same combinatorial type of their graphs and the same slopes of their
edges (but not nesessary their lengths and positions), we shall say that these curves have it the same
configuration.

D4. Draw 5 different configurations of tropical curves of degree two.

All information required for solving the following problems you can find in the paragraph ”Definition
of Viro curve and its ovals” contained in the previous part.

D5. What maximal number of ovals may have Viro curve if d = (a) 2; (b) 3; (c) 4; (d) 5? (We
do not require the proof of maximality. Compare your answer with problems A4f and A7).

D6*. Write down a computer program which:
(a) draws all configurations of tropical curves of given degree d;
(b) given a tropical curve configuration and given the set of signs ”plus, minus” assigned to all the

faces Uij of its complement — the program checks the number of Viro curve ovals.

D7*. (ab) Prove the Main Theorem (you may use Viro patchworking theorem without proof).
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SOLUTIONS

A1. Answer:no. For example, the line x = 0 is a set of zeros for different polynomials F (x, y) = x and
G(x, y) = x2.

A2. Answer: a, b, c, e, f.
Examples. (a) Any line on the plane has an equation Ax + By + C = 0 for some numbers A, B, C.
(b) Equation of a circle: (x− x0)

2 + (y − y0)
2 −R2 = 0, where (x0, y0) are coordinates of centre, R is radius.

(c) Equation of a point (x0, y0): (x − x0)
2 + (y − y0)

2 = 0.
(e) Equation of a unite of two lines: (Ax+ By + C)(ax+ by + c) = 0, where Ax+ By + C = 0 is an equation

of the first line, ax + by + c = 0 — of a second one.

(f) Equation of a unite of 6 circles:
6
∏

k=0

(

(x − xk)
2 + (y − yk)

2 − Rk
)

= 0, where (x−xk)
2+(y−yk)

2−R2
k = 0

is an equation of k-th circle.
Impossibility in point (d) is consequence of Problem A3a.
A3. (a) Let us parametrize the line l: x = x0 + α · t, y = y0 + β · t. Substituting these formulas in the

polynomial, we’ll get a new polynomial P (t), its degree no more than d. So polynomial P (t) has no more than
d real roots, or equals to zero everywhere. Now let us prove that for any d′ < d, there exist a curve of degree d
and a line l such one, that they have d′ points of intersection. Consider d lines, which are differ from l, and such
that exactly d − d′ of them are parallel to l. The product of their equations is the polynomial we need.

(b) Let d be the degree of given polynomial F (x, y) =
∑

i+j≤d

aijx
iyj. We’ll show that there exist some non-

degenerate change of coordinates x = α1x
′ + β1y

′, y = α2x
′ + β2y

′ (the word "non-degenerate"means that
α1β2 − α2β1 6= 0), such that after it the monomial (x′)d will have non-zero coefficient.

Coefficient A(α1, α2) of monomial (x′)d equals
∑

i+j≤d

aijα
i
1α

j
2
. Numbers aij aren’t equal zero (at least, some

of them), so, there exist such α1 and α2, that at least one of them isn’t equal 0, and A(α1, α2) 6= 0. Now we
take coefficients β1 and β2 not proportional to α1 and α2 (i.e., α1β2 − α2β1 6= 0), and it will be the change we
seek for.

Now let us return to solving our problem. The change from the Lemma transforms bounded sets to bounded
ones, so we may suppose that monomial xd has non-zero coefficient. As d is odd number, so for any y the equation
F (x, y) = 0 has some solution. So F−1(0) is unlimited.

A4. (a) For instance, take the polynomial f = xy(x + y − 1) + 1

100
.

Denote by φ the zero set of this polynomial. Let us prove that this polynomial is irreducible. Indeed, otherwise
there are polynomials g and h, such that f = gh. Then one of them is a polynomial of degree 1 and so φ contains
a line. This line must have a common point with one of the lines Ox and Oy. But it can’t be true because φ is
disjoint with Ox and Oy. Thus f is irreducible.

Coordinates x of the intersection of line y = c with φ satisfy the equation x2 + (c − 1)x + 1

100c
= 0. The

discriminant D = D(c) of this equation is equal to (c − 1)2 − 1

25c
. The equation D(c) = 0 is equivalent to the

equation f(c) := 25c(c − 1)2 − 1 = 0. This equation has degree 3 and thus has no more than 3 roots. Since
f( 1

100
) < 0, f(1

2
) > 0, f(1) < 0, f(2) > 0, it follows that two roots c1 and c2 of the equation f(c) = 0 belong to

the interval (0, 1), and the third root belongs to the interval (1, 2). Therefore D(c) = 0 precisely in two points
c1 and c2 of the interval (0, 1), and D(c) > 0 for any c ∈ (c1, c2) and D(c) < 0 for remaining points of the
interval (0, 1). (We assume w. l. g. that c1 < c2.) Thus for c equal either c1 or c2 the straight line y = c intersects
φ exactly at one point. Therefore for c ∈ (c1, c2) the straight line y = c intersects φ at two points (x1(c), c)

and (x2(c), c), where x1,2(c) =
±
√

D − (c − 1)

2
. For remaining values c ∈ (0, 1) the straight line y = c does not

intersect φ.
Define the curve

γ : [c1, 2c2 − c1] → R
2 by the formula

{

(x1(t), t) t ∈ [c1, c2]

(x2(2c2 − t), 2c2 − t) t ∈ [c2, 2c2 − c1]

Since the functions x1(c) and x2(c) are differentiable, it follows that the map γ(t) is differentiable at all points
except c2. Since 2c2 − t = t for t = c2 and (x1)

′(c2) = (x2)
′(c2), the map γ(t) is smooth at all points. Now it is

clear that γ(I) is a closed curve contained in φ.
(b) Hint. Consider the polynomial (x + 1)(x − 1)(y + 1)(y − 1) + 1

100
.

(c) Hint. Consider the polynomial (x2 + y2 − 1)(x2 + y2 − 9) + 1

100
.
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(d) Suppose the contrary: there exist at least one other point X. Consider some point Y inside the inner
closed curve. Then the line XY intersects the set of zeros of the given polynomial in 5 or more points. It
contradicts the statement of Problem A3(a).

(e) Answer: no. Hint. Consider the polynomial x(x2 + y2 − 1)(x2 + y2 − 9) + 1

100
.

(f) Hint. Consider the polynomial (x2 + 2y2 − 3)(2x2 + y2 − 3) + 1

100
.

(g) Hint. Consider the polynomial (x2 + y2 − 1)(x − y − 1)(x + y − 1) + 1

100
.

A5. Direction of a line OM , on which lie points 0 (beginning of coordinates) and M(x, y) on hyperbola
branch in the first quadrante, tends to direction of the line Ox (axis) when x → +∞. So Ox is "limit line"for
hyperbola xy = 1 branch in the 1st quadrante. Similarly, this line is a "limit line"for the other branch of
hyperbola. So hyperbola’s branches are equivalent.

Definition. Two unbounded branches are elementary equivalent, if they have a common "limit line".

A6. (a) Answer: one oval, if h < 0; two ovals, if h ∈ (0, 1/27), one oval, if h > 1/27. If h = 0 or h = 1/27,
the algebraic curve is degenerate. Here is the proof.

Denote f(x, y) := xy(x+y−1)+h. Further, denote the points of intersection of lines Ox, Oy and x+y−1 = 0
and regions, into which the plane is divided by the lines as follows:

A := (1, 0), B := (0, 1),

C := (0, 0), X := {(x, y) | x > 0, y > 0, x + y < 1}, XA := y < 0, x + y > 1, XB := x < 0, x + y > 1,
XC := x < 0, y < 0, YA := x < 0, y > 0, x + y < 1, YB := x > 0, y < 0, x + y < 1, YC := x > 0, y > 0, x + y > 1.

Obviously f(x, y) = h if (x,y) belongs to one of lines Ox, Oy or x + y − 1 = 0, and f(x, y) < h when (x,y)
belongs to one of regions XA, XB , XC or X, and f(x, y) > h when (x,y) belongs to one of regions YA, YB и YC .
So if h > 0 then zeros of polynomial f(x, y) may lie only in XA, XB , XC and X, and if h < 0 they may lie only
in YA, YB and YC .

Suppose h < 0. Denote yA := YA ∩ f−1(0). Definitions of yB and of yC are similar.
Let’s prove that yA is a connected componenta of the set f−1(0) of zeros of f . Coordinates x of points of

intersection lines y = c and f−1(0) are roots of the equation x2 +(c−1)x+ h
c

= 0. The discriminant D = D(c) of

this equation equals to (c−1)2 − 4h
c

. As h < 0 so for any c ∈ R+, D(c) > 0. It follows, that any line y = c, where

c ∈ R+, intersects F in two points (no more no less) namely (x1,2(c), c) such that x1,2(c) =
±
√

D − (c − 1)

2
.

Denote
γ : R+ → R

2 by formula
{

(x2(t), t) t ∈ R+ .

The function x2(c) is smooth, so the curve γ(t) is smooth also. γ(R+) = yA implies that yA is a connected
componenta of the set f−1(0) of zeros of f . Similarly yB и yC are connected componentas of the same set. It is
easy to prove that the direction of line Ox is a ”limit direction” for the branch yC . Similarly, this direction is a
”limit direction” for branch yA. So branches yA and yC are elementary equivalent. Similarly, branches yA and yB

are elementary equivalent, as for these branches the direction of line x + y − 1 = 0 is a ”limit one”. So, branches
yA, yB and yC are equivalent and form one oval.

If h = 0, then an algebraic curve f is a degenerate one. Suppose h > 0. Denote

x := X ∩ f−1(0), xA := XA ∩ f−1(0), xB := XB ∩ f−1(0) and xC := XC ∩ f−1(0).

One proves that xA, xB and xC are connected and equivalent in the same way as in the case h < 0. So they
form one oval for any h > 0. If the set x is non-empty and has more than one point, it is an oval (the proof is
similar to solution of Problem A4(a)).

Let us prove that the set of points x isn’t empty only if h ∈ (0, 1

27
]. It is clear that x is empty if and only if

D(c) < 0 for any c ∈ (0, 1). Derivative D′(c) > 0 if c ∈ (0, 1/3), D′(c) = 0 if c = 1/3, D′(c) < 0 if c ∈ (1/3, 1).
So the function D(c) has its maximum on intervale (0, 1) in the point c = 1/3. So D(c) < 0 for any c ∈ (0, 1) if
and only if D(1/3) = 4/9 − 4h

c
< 0, i.e. h > 1/27. If h = 1/27, then the set x consists from only one point. So,

if h ∈ (0, 1/27), then the set of zeros f−1(0) consists from two ovals, if h = 1/27 , then the algebraic curve is
degenerate, if h > 1/27 then the set f−1(0) has only one oval.

(b) Answer: one oval if h ∈ (− 2

3
√

3
, 2

3
√

3
), two ovals if h ∈ (−∞,− 2

3
√

3
) and h ∈ ( 2

3
√

3
,∞), an algebraic curve

x3 − x + h − y2 is degenerate if h = ± 2

3
√

3
. Hint. The situation is similar to (a).

A7. Hint. Consider the polynomial x((x − 1)2 + y2 − 2)((x + 1)2 + y2 − 2) + 1

100
.

B1. (a’) Hint. See figure 3.a’.Why the picture is right one? It is clear that the line x + y = 0 is an axis of
symmetry for the set of zeros of our polynomial. So we may study only the case y > −x. Moreover. it lies under
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the line y = x. The set of zeros intersects with coordinate axes in points (0,−1) and (1, 0). If x = 1 + ǫ (ǫ > 0)

holds (1001ǫ)
1

1001 < y < 1 + ǫ. So, if ǫ is sufficiently small, y may take values from 0 to 1. If ǫ > 1/1001, then x
is approximately equal to y. If 1 − ǫ < x < 1 (ǫ is sufficiently small) y may take values from -1 to 0. The case
y < x is analogous.

(b’) Hint. See figure 3.b’.Everything is analogous to (a’).
(c’) Hint. See figure 3.c’.
(d’) Hint. See figure 3.d’.

a b c d

a’ b’ c’ d’

Figure 3.

B2. Let F (x, y) = x3 − px+ q− y2, where p, q > 0. Then the set of zeros of the polynomial F consists of two
ovals, if a polynomial f(x) = x3 − px + q has three real roots, and it consists of one oval, if f(x) has one real
root. After solving the equation f ′(x) = 0, we’ll see, that f(x) has a local maximum in the point x1 = −

√

p/3
and a local minimum in point x2 =

√

p/3. It follows, that f(x) has three roots if and only if f(x2) < q < f(x1),
i.e., 4p3 > 27q2. Analogously, we can prove that a set of zeros of a polynomial FN (x, y) consists of two ovals if

4p3N > 27q2N and of one oval otherwise. It is obvious that if 1 < p3

q2 < 27

4
the first inequality doesn’t hold, and

the second holds for sufficiently big N .

B3. (a) Point (a) is a specific case of (b).
(b) Hint. Suppose that there is a point (x, y) such that in it values of all monomials aijx

iyj differ by their

modules, and |aklx
kyl| > |aijx

iyj| for all pairs (i, j) 6= (k, l). Then, when N → ∞, we have
∣

∣

∣

aijxiyj

aklx
kyl

∣

∣

∣

N

→ 0. So

for any sufficiently big N |aijx
iyj|N is more than the sum of modules of all the rest monomials, so the equality

FN (x, y) = 0 is impossible. So, for sufficiently big N the set F−1

N (0) tends to some subset of the union of sets,
which are defined by equalities of the type |aijx

iyj| = |aklx
kyl|.

(c) It follows from the statement of previous problem. One must consider it for a polynomial FN = x2N −
xN − yN .

(d) A set of zeros of a polynomial x2N −xN − yN , which lie in a second quadrant, is symmetric with respect
to ordinate axis to the set of zeros of a polynomial x2N +xN −yN , which lie in a first quadrant. So our statement
is a consequence of the statement of point (b).

B4. (a) Hint. See figure 4.a. Let us explain why the picture is correct. It is clear that the set of zeros of the
function f(x, y) := 21001x − 21001y − 1 lies on the right of the axis Oy. If y < 0, then x is approximately equals
to zero, and If y > 0, then x is approximately equals to y.

(b) Hint. See figure 4.b. Everything is analogous to (a).
(c) Hint. See figure 4.c.
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a b c d

Figure 4.

B6. (a) We may follow the method used in problem B3b, and we’ll see that the intersection of zero set
with the 1st coordinate quadrant lies near the union of sets x2 = y ≥ x,x2 = x ≥ y, x = y ≥ x2. But given
polynomial has the same signs of coefficients of monomials xN and yN , so FN cannot equal zero near the last
set. Logarithmical map brings the first named set to the ray y = 2x, x ≥ 0, and the second one — to the ray
x = 0, y ≤ 0.

B7. Arguing, as in Problem B3d, we see that the intersection of zero set with the first quadrant, is symmetric
with respect to abscissa axis to the intersection of zero set with the fourth quadrant, and is symmetric with
respect to coordinate beginning to the intersection with third quadrant.

B8. In the third quadrant x < 0, y < 0. It means that all monomials in FN are positive, so the equality
FN (x, y) = 0 is impossible.

B9. (a) The solution is analogous to the solution of Problem B6a.
(b) It follows from the problem B3d, that the intersection of a set of zeros with the second quadrante lies

near sets x2 = y ≥ −x, x2 = −x ≥ y, −x = y ≥ x2. Signs of monomials −xN and x2N coincide in the second
quadrant. So the intersection of a set of zeros with the second quadrant lie only near the first and the third of
the named sets.

B10. Arguing, as in Problem B9b, we see that the intersection we study lies near the unite of sets (1, y), 0 ≥
y ≥ −1 and 0 ≤ x = −y ≤ 1.

B11. Any edge of a tropical curve may be defined by the system which consists of one equation and some
inequalities of typeix + jy + bij = kx + ly + bkl ≥ px + qy + bpq. If this system is compatible, then the equation
defines some line, and inequalities show that one must take a ray or segment instead of all line.

B12. Hint. Really, let us study zeros of a polynomial FN (x, y) in each quadrant separately. The map LOG :
(R−{0})2 → R

2, (x, y) 7→ (log2 |x|, log2 |y|) is a bijection of each quadrant to the plane. Let us take any quadrant
(for example x, y > 0), and let us identify it with the plane with this map. A tropical curve, corresponding to
a tropical polynomial max

i+j≤d
{ix + jy + bij}, bij = log2 |aij |, divides a tropical plane to some areas. In each of

this areas one of the monomials (aijxiyj)
N defines the behavior of the polynomial FN (x, y), and it is positive or

negative, correspondingly to the sign of a coefficients aij (of course, it depends also from the quadrant). Let us
paint each area of the complement to tropical curve in one color, if FN is positive in this area, and in other color,
if FN is negative in it. If two areas i-th common edge are painted in different colors, then, by the Theorem on
intermediate value near this edge lies some branch of the set of zeros of FN . Now, if such two areas are painted
in the same color, then no real point of the curve lies near this edge. So, for big odd values of N the set of zeros
of FN (in chosen quadrant) may be approximately shown as a set of some edges of a tropical curve (which may
be implicitly named), and the set of zeros of FN in all the plane is, approximately, a Viro curve.

Principally, the set of zeros of FN could have more branches, than Viro curve — for example, there could
be some ”small” ovals near vertices of tropical curve. But the supposition about the number of Viro curve ovals
(we suppose it has (d − 1)(d − 2)/2 + 1 ovals), combined with Harnak theorem guarantees us from superfluous
branches and ovals.

Remark. Authors of the problem don’t know, is Viro patchworking theorem is true without the supposition
that Viro curve has (d − 1)(d − 2)/2 + 1 ovals.

C5. (a) See figure 5.a.
(b) See figure 5.b.
(c) See figure 6.
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a b

Figure 5.

Figure 6.

D1. (a) Hint. The behavior of a function max{x + a, y + b, c} is such one. If x and y are negative and big
(by module) then the constanta c is the biggest of our three values. When x increases, nothing changes till the
point (x, y) will intersect the vertical line x+a = c. After such intersection the value x+a is maximal. Similarly,
when the point (x, y) moves up, maximal value is still c till it would reach the horizontal line y + b = c. On it
both values y + b and c are maximal, later - only y + b. At last, the areas, in which maximal value is x + a or
y + b, are divided by the ray of the line x + a = y + b. All three rays have the common point (c − a, c − b)

D2. (a) It is obvious.
(b) Hint. Let us take any vertice of the curve. Suppose that there are r areas (supplements to tropical curve)

which are near this vertice, and that in these areas maximal are functions i1x + j1y + bi1j1, . . . , irx + jry + birjr ,
respectively (we suppose that the areas are numerated in positive direction, against the clock needle). Then the
equality is obvious:

(

i2 − i1
j2 − j1

)

+ · · · +
(

ir − ir−1

jr − jr−1

)

+

(

i1 − ir
j1 − jr

)

= 0.

Now one has to notice only, that the vector
(

is+1−is
js+1−js

)

differs from the vector vs in the ”balance condition” only
by turn on 90◦.

(c) Hint. Let us prove, for example, that the tropical curve of degree d has exactly d horizontal rays (counting
with multiplicity, of course). Let us study only the part of the plane, where coordinate x is negative and very big
by module. Obviously in this part only one of the values jy + a0j , j = 0, 1, . . . , d may be the maximal one. It is
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obvious also, that in this part, when y is negative and big by module, then a00 is maximal, and when y is positive
and big by module, then dy+a0d is maximal. Let y grow, and suppose, that maximal value will be (successively)
a00, j1y + a0j1 , j2y + a0j2 , . . . , jky + a0jk

, dy + a0d. One easily sees, that 0 < j1 < j2 < · · · < jk < d. Then
multiplicities of horizontal edges are equal to j1, j2− j1, . . . , d− jk. So their number (counting with multiplicity)
equals (j1) + (j2 − j1) + · · · + (d − jk) = d.

D3. (ab) Hint. Really, suppose, that in some area a tropical polynomial coincides with a linear function
ix + jy + bij . Consider the line, which contains a segment of boundary of this area; let px + qy + r = 0 be its
equation. Then in the neighbor area (which borders with the first one by the segment) our polynomial coincides
with linear function (i + p)x + (j + q)y + (bij + r). In other words, we set the equality bi+p,j+q = bi,j + r.
Proceeding in the same way, we’ll restore all the polynomial, area by area, by induction. The ”balance condition”
guarantees, that we’ll never come to contradiction. The condition on behavior of tropical curve on infinity
guarantees existence only such ”tropical monoms”, which we have got in the process, which are only possible for
tropical polynomials of given degree.

D4. Hint. A tropical curve of degree two one may get, as usual hyperbola, by little stirring of unite of two
tropical lines. Unite of two tropical lines may be defined by the sum of two tropical polynomials of degree one.
A graph — set of break points of such sum — has a vertice of 4 valency, in it maximal are four functions at once.
When we’ll stir one of these function (small stirring), a point of 4 valency will break on two points of 3 valency.
Some of such possible tropical curves of degree two are given on Figure 7.

Figure 7.

D5. Answer. (a) 1; (b) 2; (c) 4; (d) 7.

D7. (b) Dividing of Newton diagram. When solving problems of part D7 it may be useful to remember
such a ”dual” description of tropical curves configurations. Consider a triangle on the plane whose vertices are
(0; 0), (0, d) and (d, 0). This triangle is called it a Newton triangle of a tropical polynomial. If you have any
tropical curve, you have also the corresponding division of Newton triangle to a number of convex polygons with
integer vertices. Namely, consider an area in complement of a tropical curve, in which the value ix + jy + bij

is maximal. We’ll juxtapose to it a vertex with coordinates (i, j) on Newton triangle. If some edge divides two
areas, we’ll juxtapose to it the segment in Newton diagram from one vertex to other. At last, any vertex of
tropical curve, in which r areas meet, corresponds the polygon with r corresponding vertices. In particular, if
some area is infinite, the corresponding point will lie on the border of diagram, and if the edge is infinite — the
corresponding segment lies on the border. It is useful to remember, that the direction of any edge of tropical
curve is orthogonal to the direction of ”dual” edge on diagram.

An algorithm of drawing of Viro curves. It is convenient to reformulate the procedure of drawing of
Viro curves on the ”dual” language of Newton diagrams. This procedure, named ”Viro patchworking”, consists
in such successive steps (look the result in figure 8).

1. Take any triangulation of Newton diagram ∆ with integer vertices;

2. In vertices of this triangulation we pose signs + or -, in arbitrary way.

3. Reflecting the Newton diagram with its triangulation respectively from coordinate axes, we get the
triangulation of a square |i| + |j| ≤ d, (this square has the name of it expanded Newton diagram).

4. Now we continue posing signs on vertices of the expanded Newton diagram, as follows: sign of vertice
(e1i, e2j) differs from the sign of vertice (i, j) by the factor ei

1e
j
2
, where e1, e2 = ±1.

5. In every triangle of our triangulation of expanded Newton diagram we’ll join by a segment midpoints of
edges, on whose ends signs are different (if one has such edges). Unite of all this segments is a broken line
on expanded Newton diagram. This line is a combinatorial model of Viro curve.
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6. Let us identify the opposite points of the border of expanded Newton diagram. Then some branches of
combinatorial model of Viro curve will patch in it ovals.
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