The Nagel, Gergonne, and Feuerbach points and their properties

2. Main problems

A.Yakubov, A.Zaykov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O..Zaslavsky

14. $A_{0} B_{0}, C_{0} I, C C^{\prime \prime}$ are concurrent.

Suppose P be an arbitrary point not lying on the sidelines of $A B C$. Then lines symmetric to $A P, B P, C P$ in bisectors of angles A, B, C, respectively, have a common point (perhaps a point at infinity). This point is called isogonally conjugate to P with respect to $A B C$.

Further notation. Let $I_{1}, I_{A_{1}}, I_{B_{1}}, I_{C_{1}}, H_{1}$ be isotomically conjugates to $I, I_{A}, I_{B}, I_{C}, H$, respectively; let G_{2}, N_{2} be isogonally conjugates to G, N, respectively. Similarly define $G_{A_{2}}, N_{A_{2}}, G_{B_{2}}, N_{B_{2}}, G_{C_{2}}, N_{C_{2}}$. Let L^{\prime} be the Lemoinne point of $\triangle A^{\prime} B^{\prime} C^{\prime}$.
15. N_{2} and G_{2} are centers of homotheties taking the incircle of $A B C$ to the circumcircle of $A B C$.
16. H_{1}, I_{1}, N, G are collinear and form a harmonic quadruple.

16'. Same for quadruples $H_{1}, I_{A_{1}}, N_{A}, G_{A}$, etc.
17. $I_{A_{1}} I_{1}, N N_{A}, B C$ are concurrent.
$17^{\prime} . I_{B_{1}} I_{C_{1}}, N_{B} N_{C}, B C$ are concurrent.
18. $I_{A_{1}} I_{1}, N N_{A}, B C, G G_{A}$ are concurrent.

18'. $I_{B_{1}} I_{C_{1}}, N_{B} N_{C}, B C, G_{B} G_{C}$ are concurrent.
19. $N G, N_{A} G_{A}, N_{B} G_{B}, N_{C} G_{C}$ meet at L^{\prime}.

Corollary: Triangles $N_{A} N_{B} N_{C}$ and $G_{A} G_{B} G_{C}$ are perspective with perspector L^{\prime}.
20. Lines $I L$ and $N G$ are parallel.
$20^{\prime} . N_{A} G_{A}\left\|I_{A} L, N_{B} G_{B}\right\| I_{B} L, N_{C} G_{C} \| I_{C} L$.
Let $X Y Z$ and $X_{1} Y_{1} Z_{1}$ be perspective triangles. By Desargue theorem, $X Y \cap$
$X_{1} Y_{1}, X Z \cap X_{1} Z_{1}, Z Y \cap Z_{1} Y_{1}$ lie on a line called the perspective axis of given triangles.
21. The perspective axis of $N_{A} N_{B} N_{C}$ and $A B C$ coincides with the perspective axis of $G_{A} G_{B} G_{C}$ and $A B C$. This axis if perpendicular to $I G$.
(Sondat theorem). Suppose triangles $X Y Z$ and $X_{1} Y_{1} Z_{1}$ are perspective and orthologic simultaneously. Then two centers of orthology and the perspector lie on a line одновременно и перспективны и ортогологичны, то два центра ортологичности и центр перспективы этих треугольников лежат на одной прямой, перпендикулярной оси перспективы $\triangle X Y Z$ и $\triangle X_{1} Y_{1} Z_{1}$
22. I is the orthology center of triangles $N_{A} N_{B} N_{C}$ and $A B C$.
23. Solve the problem 20 using problems 21 and 22 (and perhaps some of previous).

3. Additional problems

Let U be an arbitrary point not lying on $X Y, Y Z, Z X$. The perspective axis of traingle $X Y Z$ and the cevian traingle of U is called the trilinear polar line of U with respect to $\triangle X Y Z$.
24. The trilinear polar line of G is perpendicular to $I G$.
25. Let U be a point of the circumcircle of $\triangle X Y Z, U \neq X, U \neq Y, U \neq Z$. Suppose L_{0} is the Lemoinne point of triangle $\triangle X Y Z$. Then the trilinear polar line of U with respect to $\triangle X Y Z$ passes through L_{0}.
26. Given a triangle $X Y Z$ and a point Q not lying on the sidelines of $X Y Z$. Suppose that $X Q \cap Y Z=X_{1} ; Y Q \cap X Z=Y_{1} ; Z Q \cap Y X=Z_{1} ; Y_{1} Z_{1} \cap Y Z=$ X_{2}; then Y, Z, X_{1}, X_{2} is a harmonic quadruple.
27. Let U and V be points not lying on $X Y, X Z, Y Z$. Let U^{\prime} and V^{\prime} be its isogonally (or isotomically) conjugates with respect to $\triangle X Y Z$. If V lies on the trilinear polar line of U^{\prime}, then U lies on the trilinear polar line of V^{\prime}.
28. Perspective axis of $N_{A} N_{B} N_{C}$ and $A B C$, or $G_{A} G_{B} G_{C}$ and $A B C$, is the trilinear polar line of I_{1} with respect to $A B C$.
29. The trilinear polar lines of I_{1} and G with respect to $A B C$ are parallel.
30. Solve the problem 20 using problems 24 - 28 (and perhaps some other previous problems) WITHOUT applying Sondat theorem.
31. If P lies on the trilinear polar line of G, then the trilinear polar line of P touches the incircle.

The Feuerbach theorem. The nine-point circle of triangle $A B C$ touches its incircle and excircles. The touching points F, F_{A}, F_{B}, F_{C} are called the Feuerbach points.

31'. Suppose P is the point at infinity of the trilinear polar line of G; then the trilinear polar line of P touches the incircle at F.
32. The reflections of F in the sidelines of $\triangle A_{0} B_{0} C_{0}$ lies on $O I$.
33. A_{A}, B_{B}, C_{C}, and F are concyclic.
34. Formulate analogues of problems $31^{\prime}, 32,33$ for points F_{A}, F_{B}, F_{C}.

