The Nagel, Gergonne, and Feuerbach points and their properties 2. Main problems A.Yakubov, A.Zaykov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O..Zaslavsky

14. A_0B_0, C_0I, CC'' are concurrent.

Suppose P be an arbitrary point not lying on the sidelines of ABC. Then lines symmetric to AP, BP, CP in bisectors of angles A, B, C, respectively, have a common point (perhaps a point at infinity). This point is called *isogonally conjugate* to P with respect to ABC.

Further notation. Let I_1 , I_{A_1} , I_{B_1} , I_{C_1} , H_1 be isotomically conjugates to I, I_A , I_B , I_C , H, respectively; let G_2 , N_2 be isogonally conjugates to G, N, respectively. Similarly define G_{A_2} , N_{A_2} , G_{B_2} , N_{B_2} , G_{C_2} , N_{C_2} . Let L' be the Lemoinne point of $\triangle A'B'C'$.

15. N_2 and G_2 are centers of homotheties taking the incircle of ABC to the circumcircle of ABC.

16. H_1 , I_1 , N, G are collinear and form a harmonic quadruple.

16'. Same for quadruples H_1 , I_{A_1} , N_A , G_A , etc.

17. $I_{A_1}I_1$, NN_A , BC are concurrent.

17'. $I_{B_1}I_{C_1}$, N_BN_C , BC are concurrent.

18. $I_{A_1}I_1$, NN_A , BC, GG_A are concurrent.

18'. $I_{B_1}I_{C_1}$, N_BN_C , BC, G_BG_C are concurrent.

19. NG, N_AG_A , N_BG_B , N_CG_C meet at L'. Corollary: Triangles $N_AN_BN_C$ and $G_AG_BG_C$ are perspective with perspector L'.

20. Lines IL and NG are parallel.

20'. $N_A G_A \parallel I_A L, N_B G_B \parallel I_B L, N_C G_C \parallel I_C L.$

Let XYZ and $X_1Y_1Z_1$ be perspective triangles. By Desargue theorem, $XY \cap$

 $X_1Y_1, XZ \cap X_1Z_1, ZY \cap Z_1Y_1$ lie on a line called *the perspective axis* of given triangles.

21. The perspective axis of $N_A N_B N_C$ and ABC coincides with the perspective axis of $G_A G_B G_C$ and ABC. This axis if perpendicular to IG.

(Sondat theorem). Suppose triangles XYZ and $X_1Y_1Z_1$ are perspective and orthologic simultaneously. Then two centers of orthology and the perspector lie on a line одновременно и перспективны и ортогологичны, то два центра ортологичности и центр перспективы этих треугольников лежат на одной прямой, перпендикулярной оси перспективы $\triangle XYZ$ и $\triangle X_1Y_1Z_1$

22. I is the orthology center of triangles $N_A N_B N_C$ and ABC.

23. Solve the problem 20 using problems 21 and 22 (and perhaps some of previous).

3. Additional problems

Let U be an arbitrary point not lying on XY, YZ, ZX. The perspective axis of traingle XYZ and the cevian traingle of U is called the trilinear polar line of U with respect to $\triangle XYZ$.

24. The trilinear polar line of G is perpendicular to IG.

25. Let U be a point of the circumcircle of $\triangle XYZ$, $U \neq X, U \neq Y, U \neq Z$. Suppose L_0 is the Lemoinne point of triangle $\triangle XYZ$. Then the trilinear polar line of U with respect to $\triangle XYZ$ passes through L_0 .

26. Given a triangle XYZ and a point Q not lying on the sidelines of XYZ. Suppose that $XQ \cap YZ = X_1; YQ \cap XZ = Y_1; ZQ \cap YX = Z_1; Y_1Z_1 \cap YZ = X_2;$ then Y, Z, X_1, X_2 is a harmonic quadruple.

27. Let U and V be points not lying on XY, XZ, YZ. Let U' and V' be its isogonally (or isotomically) conjugates with respect to $\triangle XYZ$. If V lies on the trilinear polar line of U', then U lies on the trilinear polar line of V'.

28. Perspective axis of $N_A N_B N_C$ and ABC, or $G_A G_B G_C$ and ABC, is the trilinear polar line of I_1 with respect to ABC.

29. The trilinear polar lines of I_1 and G with respect to ABC are parallel.

30. Solve the problem 20 using problems 24-28 (and perhaps some other previous problems) WITHOUT applying Sondat theorem.

31. If P lies on the trilinear polar line of G, then the trilinear polar line of P touches the incircle.

The Feuerbach theorem. The nine-point circle of triangle ABC touches its incircle and excircles. The touching points F, F_A , F_B , F_C are called the Feuerbach points.

31'. Suppose P is the point at infinity of the trilinear polar line of G; then the trilinear polar line of P touches the incircle at F.

32. The reflections of F in the sidelines of $\triangle A_0 B_0 C_0$ lies on OI.

33. A_A , B_B , C_C , and F are concyclic.

34. Formulate analogues of problems 31', 32, 33 for points F_A , F_B , F_C .