The Nagel, Gergonne, and Feuerbach points and their properties
 A.Yakubov, A.Zaykov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O..Zaslavsky

2. Main problems

14. Consider the polar transformation wrt the incircle. Point C is the pole of line $A_{0} B_{0}$, and the infinite point of $A B$ is the pole of line $C_{0} I$. Therefore $S=A_{0} B_{0} \cap C_{0} I$ is the pole of line n passing through C and parallel to $A B$. Then the quadruple of lines $C A_{0}, C B_{0}, C S$ and n is harmonic. These lines meet $A B$ at A, B, infinite point and the midpoint of the side (because the cross-ratio is equal to -1), hence C, S and $C^{\prime \prime}$ are collinear.
15. Take the composition of the inversion with center A and radius $\sqrt{A B \cdot A C}$ and the reflection about the bisector of angle $B A C$. It maps B to C and vice versa. Hence the image of line $B C$ is the circumcircle of triangle $A B C$. The image of the incircle touches the rays $A B$ and $A C$ and touches the circle $A B C$ externally at point X which is the image of A_{0}. Therefore G_{2} lies on $A X$. Since A is the external homothety center of the incircle and its image, and X is the internal homothety center of the circumcircle and the image of the incircle, we obtain that the internal homothety center of the incircle and the circumcircle lies on the line $A X$ coinciding with $A G_{2}$. Similarly it lies on $B G_{2}$ and $C G_{2}$. Hence this center coincide with G_{2}. Similarly the external homothety center coincide with N_{2}.
16. It is known that the isogonal and the isotomic conjugations map lines to circumconics and vice versa. Therefore their composition maps lines to lines, i.e this transformation is projective. It maps N_{2} to G, G_{2} to N, I to I_{1}, and O to H_{1}. By the assertion of problem 15 , the quadruple O, I, G_{2}, N_{2} is harmonic. Therefore the quadruple H_{1}, I_{1}, N, G is also harmonic. The prove for the remaining quadruples is similar.
17. Let X be the common point of $N N_{A}$ and $B C, Y$ be the common point of $I_{A_{1}} I_{1}$ and $B C$. Since I_{1} and $I_{A_{1}}$ are isotomically conjugated to I and I_{A} respectively, we obtain that $\frac{B Y}{Y C}=\frac{A C}{A B}$. Consider the homothety with center M and coefficient $-\frac{1}{2}$. By the assertion of problem 7 it maps the line $N N_{A}$ to $I I_{A}$, i.e the bisector of angle A. Also it maps B and C to $B^{\prime \prime}$ and $C^{\prime \prime \prime}$ respectively, and X to $X^{\prime \prime}$. By the bisector
property $\frac{\overline{B^{\prime \prime} X^{\prime \prime}}}{\frac{X^{\prime \prime} C^{\prime \prime}}{B^{\prime \prime} A}} \frac{\frac{C A}{C^{\prime \prime \prime} A}}{B A}=\frac{\overline{B Y}}{\overline{Y C C}}$. Also $\frac{\overline{B^{\prime \prime} X^{\prime \prime}}}{X^{\prime \prime} C^{\prime \prime}}=\frac{\overline{B X}}{\overline{X C}}$. Hence X and Y coincide. Thus $I_{A_{1}} I_{1}, N N_{A}, B C$ concur.

Similarly $I_{B_{1}} I_{C_{1}}, N_{B} N_{C}, B C$ concur.
18. The points I_{1}, H_{1}, N, G are collinear; and $I_{A_{1}}, H_{1}, N_{A}, G_{A}$ are collinear. Also the quadruples I_{1}, H_{1}, N, G and $I_{A_{1}}, H_{1}, N_{A}, G_{A}$ are harmonic. Therefore the lines $I_{A_{1}} I_{1}, N N_{A}, G G_{A}$ concur. Using the assertion of problem 17 we obtain the required one.

19. By the assertion of the problem 16 all indicated lines pass through H_{1}. Thus we have to prove that H_{1} and L^{\prime} coincide. Prove that
$A H_{1}$ passes through L^{\prime}. Let X and Y be the projections of A^{\prime} and L^{\prime} respectively to $B^{\prime} C^{\prime}$, and let Z be the reflection of Y about L^{\prime}. The line $A H_{1}$ passes through the reflection of H_{A} about $A^{\prime \prime}$. Note that the reflection about $A^{\prime \prime}$ maps the altitude from A to the line $A^{\prime} X$. The line $B C$ bisects $A^{\prime} X$. Therefore $A H_{1}$ passes through the midpoint of $A^{\prime} X$. The quadrilateral $Z Y X A^{\prime}$ is a trapezoid, and L^{\prime} is the midpoint of its base $Y Z$. Hence $A H^{\prime}$ passes through the midpoint of $A^{\prime} X$. To obtain that $A H^{\prime}$ passes through L^{\prime}, prove that A is the common point of lateral sidelines, i.e. A, Z, A^{\prime} are collinear. Let S and T be the projections of L^{\prime} to $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ respectively. The triangle $S T Y$ is the pedal triangle of L^{\prime} wrt $A^{\prime} B^{\prime} C^{\prime}$. Since L^{\prime} is the Lemoine point of $\triangle A^{\prime} B^{\prime} C^{\prime}$, we obtain that L^{\prime} is the centroid of its pedal triangle. Let P be the common point of $S T$ and $Y L^{\prime}$. Then $Y P$ is a median of triangle $Y S T$. Therefore $\frac{\overline{Y L^{\prime}}}{\overline{L^{\prime} P}}=2, \overline{Y L^{\prime}}=\overline{L^{\prime} Z}$. From this P is the midpoint of $L^{\prime} Z$. The common point of $S T$ and $L^{\prime} Z$ bisects these segments. Hence $S L^{\prime} T Z$ is a parallelogram. Since $S L^{\prime} \perp S A^{\prime}$ and $T L^{\prime} \perp T A^{\prime}$, we obtain that $S Z \perp A^{\prime} T$ and $T Z \perp A^{\prime} S$, i.e. Z is the orthocenter of triangle $S A^{\prime} T$, and L^{\prime} is opposite to A^{\prime} on its circumcircle. Hence the lines $A^{\prime} L^{\prime}$ and $A^{\prime} Z$ are symmetric wrt the bisector of angle $B^{\prime} A^{\prime} C^{\prime}$, i.e. $A^{\prime} L^{\prime}$ is a symedian of $\triangle A^{\prime} B^{\prime} C^{\prime}$, and $A^{\prime} Z$ is its median. Since A is the midpoint of $B^{\prime} C^{\prime}$, we obtain that A^{\prime}, Z, A are collinear.

20. The homothety with center M and coefficient $-\frac{1}{2}$ maps N and L^{\prime} to I and L respectively. Thus the lines $I L$ and $N L^{\prime}$ are parallel. But by the assertion of the problem 19 the points L^{\prime}, N, G are collinear.

Similarly the lines $N_{A} G_{A}$ and $I_{A} L, N_{B} G_{B}$ and $I_{B} L, N_{C} G_{C}$ and $I_{C} L$ are parallel.
21. By the assertion of the problem 18 the perspective axes of triangles $N_{A} N_{B} N_{C}$ and $A B C, G_{A} G_{B} G_{C}$ and $A B C$ coincide with the line through $A B \cap I_{A_{1}} I_{B_{1}}, A C \cap I_{A_{1}} I_{C_{1}}, B C \cap I_{B_{1}} I_{C_{1}}$.
The perpendicularity can be proved by the Sondat theorem (problem $23)$ or the properties of trilinear polars (problems 25-29).
22. The triangle $N_{A} N_{B} N_{C}$ is homothetic to $I_{A} I_{B} I_{C}$ with center M. Hence $N_{A} N_{B} \| I_{A} I_{B}$, i.e. $N_{A} N_{B} \perp C I$. Similarly $N_{A} N_{C} \perp B I$; $N_{B} N_{C} \perp A I$. Therefore I is the orthology center of triangles $N_{A} N_{B} N_{C}$ and $A B C$.
23. The triangles $N_{A} N_{B} N_{C}$ and $A B C$ are perspective with center G. Thus it is sufficiently to prove that I is one of their orthology centers which follows from the assertion of problem 22.

3. Additional problems. Hints.

24. The trypolar of G coincide with its polar wrt the incircle.
25. It is sufficiently to consider a regular triangle.
26. Follows from the Ceva and the Menelaus theorem.
27. A projective transformation reduces this problem to the problem 25.
28. It is sufficiently to consider a regular triangle.

31', 32. Both assertions are equivalent to the following one: the tangent to the incircle at the Feuerbach point touches also the Steiner inellipse, which touches the sides of the triangle at its midpoints (see. [1]).
33. By the assertion of the problem 16 the Nagel point lies on the Feuerbach hyperbola (see. [2]).

References

[1] http://www.jcgeometry.org/Articles/Volume1/JCG2012V1pp23-31.pdf
[2] A.V.Akopyan, A.A.Zaslavsky. Geometry of conics. AMS, 2007.

