The Nagel, Gergonne, and Feuerbach points and their properties

\author{

1. Introductionary problems
 A.Jakubov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O.Zaslavsky
}
2. Ceva theorem. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points on the sidelines of a triangle $A B C$. Prove that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are conurrent or parallel iff $B A^{\prime} \cdot C B^{\prime} \cdot A C^{\prime}=$ $-C A^{\prime} \cdot A B^{\prime} \cdot B C^{\prime}$ (here we consider directed segments).

Let $A B C$ be a triangle. Let the inscribed circle touches the sides $B C$, $C A, A B$ at points A_{0}, B_{0}, C_{0}, respectively.

1. Prove that ${ }^{1} A A_{0}, B B_{0}, C C_{0}$ have a common point G.

The point G from the previous problem is called the Gergonne point of the triangle. Consider the excircle touching the side $B C$. Let this excircle touches $A B, A C$, and $B C$ at C_{A}, B_{A}, and A_{A}, respectively.
2. $A A_{A}, B B_{A}$, and $C C_{A}$ have a common point G_{A}.

Let us call the point G_{A} from the previous problem the external Gergonne point corresponding to A. Similarly define points $A_{B}, B_{B}, C_{B}, G_{B}, A_{C}, B_{C}$, C_{C}, G_{C}.

Introduce some standart notation. Let I be the incenter, and I_{A}, I_{B}, I_{C} be the centers of the excircles. Let $B e, B e_{A}, B e_{B}, B e_{C}$ be the centers of the circles $I_{A} I_{B} I_{C}, I I_{B} I_{C}, I_{A} I I_{C}, I_{A} I_{B} I$, respectively ($B e$ is called the Bevan point, let us call $B e_{A}, B e_{B}, B e_{C}$ the external Bevan points). Let O, H, M be the circumcenter, the orthocenter, the centroid of $A B C$, respectively. Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the midpoints of $B C, C A, A B$, respectively. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be reflections of A, B, C in $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, respectively, let H^{\prime} be the orthocenter of $A^{\prime} B^{\prime} C^{\prime}$.
3. O, M, H are collinear, and $\frac{\overline{O M}}{M H}=\frac{1}{2}$.

The line from the previous problem is called the Euler line of the given triangle.
3. $\frac{\overline{H^{\prime} M}}{\overline{H^{\prime} O}}=\frac{4}{3}$.

[^0]4. Let X_{A}, X_{B}, X_{C} be points on the sides $B C, C A, A B$, respectively, so that $A X_{A}, B X_{B}, C X_{C}$ intersect at point X. Let Y_{A}, Y_{B}, Y_{C} be reflections of X_{A}, X_{B}, X_{C} in $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, respectively. $A Y_{A}, B Y_{B}, C Y_{C}$ have a common point Y.

Points X and Y from the previous problem are called isotomically conjugates with respect to $A B C$.
5. $A A_{A}, B B_{B}, C C_{C}$ have a common point N which is isotomically conjugate to the Gergonne point.

The point from the previous problem is called the Nagel point.
6. Lines $A A_{0}, B B_{C}, C C_{B}$ have a common point N_{A} that is isotomically conjugate to G_{A}.

The point from the previous problem is called the external Nagel point corresponding to A. Points N_{B} and N_{C} defined similarly.

To each direction put into correspondence a point at infinity (assume that this point of infinity lies on each line of this direction). Triangles $X_{1} Y_{1} Z_{1}$ and $X_{2} Y_{2} Z_{2}$ are called perspective if lines $X_{1} X_{2}, Y_{1} Y_{2}$, and $Z_{1} Z_{2}$ are concurrent. In this case the common point of $X_{1} X_{2}, Y_{1} Y_{2}$, and $Z_{1} Z_{2}$ is called the perspector of triangles $X_{1} Y_{1} Z_{1}$ and $X_{2} Y_{2} Z_{2}$ (the perspector could be a point at infinity).
7. M cuts each of segments $I N, I_{A} N_{A}, I_{B} N_{B}, I_{C} N_{C}$ at ratio 1:2.

Corollary. Triangles $I_{A} I_{B} I_{C}$ and $N_{A} N_{B} N_{C}$ are perspective with M as a perspector.
8. O is the midpiont of segments $B e I, B e_{A} I_{A}, B e_{B} I_{B}, B e_{C} I_{C}$.

Corollary. Triangles $I_{A} I_{B} I_{C}$ and $B e_{A} B e_{B} B e_{C}$ are perspective with O as a perspector.
9. $B e, B e_{A}, B e_{B}, B e_{C}$ are the midpoints of the segments $H^{\prime} N, H^{\prime} N_{A}, H^{\prime} N_{B}, H^{\prime} N_{C}$, respectively.
Corollary. Triangles $B e_{A} B e_{B} B e_{C}$ and $N_{A} N_{B} N_{C}$ are homothetic (hence perspective) with center H^{\prime} and ratio 2 .
10. Lines $C_{C} G_{A}, A_{A} G_{C}, B G$ are concurrent.
11. Lines $A_{B} C_{0}, G_{B} G, B I, C_{B} A_{0}$ are concurrent.

11'. Lines $A_{A} C_{C}, G_{A} G_{C}, I_{A} I_{C}, A_{C} C_{A}$ are concurrent (as well as analogous triples of lines).
12. $I_{A} G_{A} \cap I_{C} G_{C}, B e, N$ are collinear.

12'. $I_{A} G_{A} \cap I_{C} G_{C}, B e_{B}, N_{B}$ are collinear.
13. $I_{A} G_{A}, I_{B} G_{B}, I_{C} G_{C}$, and $I G$, meet at H^{\prime}.

Corollary: Triangles $I_{A} I_{B} I_{C}$ and $G_{A} G_{B} G_{C}$ are perspective with perspector H^{\prime}.

[^0]: ${ }^{1}$ in the next problems the words "Prove that" will be omitted

