The Nagel, Gergonne, and Feuerbach points and their properties 1. Introductionary problems A.Jakubov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O.Zaslavsky

0. Ceva theorem. Let A', B', C' be points on the sidelines of a triangle ABC. Prove that AA', BB', CC' are conurrent or parallel iff $BA' \cdot CB' \cdot AC' = -CA' \cdot AB' \cdot BC'$ (here we consider directed segments).

Let ABC be a triangle. Let the inscribed circle touches the sides BC, CA, AB at points A_0, B_0, C_0 , respectively.

1. Prove that AA_0 , BB_0 , CC_0 have a common point G.

The point G from the previous problem is called the Gergonne point of the triangle. Consider the excircle touching the side BC. Let this excircle touches AB, AC, and BC at C_A , B_A , and A_A , respectively.

2. AA_A, BB_A , and CC_A have a common point G_A .

Let us call the point G_A from the previous problem the external Gergonne point corresponding to A. Similarly define points A_B , B_B , C_B , G_B , A_C , B_C , C_C , G_C .

Introduce some standart notation. Let I be the incenter, and I_A , I_B , I_C be the centers of the excircles. Let Be, Be_A , Be_B , Be_C be the centers of the circles $I_A I_B I_C$, $II_B I_C$, $I_A II_C$, $I_A I_B I$, respectively (Be is called the Bevan point, let us call Be_A , Be_B , Be_C the external Bevan points). Let O, H, M be the circumcenter, the orthocenter, the centroid of ABC, respectively. Let A'', B'', C'' be the midpoints of BC, CA, AB, respectively. Let A', B', C' be reflections of A, B, C in A'', B'', C'', respectively, let H' be the orthocenter of A'B'C'.

3. O, M, H are collinear, and $\frac{\overline{OM}}{\overline{MH}} = \frac{1}{2}$.

The line from the previous problem is called *the Euler line* of the given triangle.

3'. $\frac{\overline{H'M}}{\overline{H'O}} = \frac{4}{3}$.

¹in the next problems the words "Prove that" will be omitted

4. Let X_A , X_B , X_C be points on the sides BC, CA, AB, respectively, so that AX_A , BX_B , CX_C intersect at point X. Let Y_A , Y_B , Y_C be reflections of X_A , X_B , X_C in A'', B'', C'', respectively. AY_A , BY_B , CY_C have a common point Y.

Points X and Y from the previous problem are called *isotomically conjugates* with respect to ABC.

5. AA_A , BB_B , CC_C have a common point N which is isotomically conjugate to the Gergonne point.

The point from the previous problem is called *the Nagel point*.

6. Lines AA_0 , BB_C , CC_B have a common point N_A that is isotomically conjugate to G_A .

The point from the previous problem is called the external Nagel point corresponding to A. Points N_B and N_C defined similarly.

To each direction put into correspondence a point at infinity (assume that this point of infinity lies on each line of this direction). Triangles $X_1Y_1Z_1$ and $X_2Y_2Z_2$ are called *perspective* if lines X_1X_2 , Y_1Y_2 , and Z_1Z_2 are concurrent. In this case the common point of X_1X_2 , Y_1Y_2 , and Z_1Z_2 is called *the perspector* of triangles $X_1Y_1Z_1$ and $X_2Y_2Z_2$ (the perspector could be a point at infinity).

7. M cuts each of segments IN, I_AN_A , I_BN_B , I_CN_C at ratio 1:2. Corollary. Triangles $I_AI_BI_C$ and $N_AN_BN_C$ are perspective with M as a perspector.

8. *O* is the midpiont of segments BeI, Be_AI_A , Be_BI_B , Be_CI_C . Corollary. Triangles $I_AI_BI_C$ and $Be_ABe_BBe_C$ are perspective with *O* as a perspector.

9. Be, Be_A, Be_B, Be_C are the midpoints of the segments $H'N, H'N_A, H'N_B, H'N_C$, respectively.

Corollary. Triangles $Be_ABe_BBe_C$ and $N_AN_BN_C$ are homothetic (hence perspective) with center H' and ratio 2.

10. Lines $C_C G_A$, $A_A G_C$, BG are concurrent.

11. Lines A_BC_0 , G_BG , BI, C_BA_0 are concurrent.

11'. Lines $A_A C_C$, $G_A G_C$, $I_A I_C$, $A_C C_A$ are concurrent (as well as analogous triples of lines).

12. $I_A G_A \cap I_C G_C$, Be, N are collinear.

12'. $I_A G_A \cap I_C G_C$, Be_B , N_B are collinear.

13. I_AG_A , I_BG_B , I_CG_C , and IG, meet at H'. Corollary: Triangles $I_AI_BI_C$ and $G_AG_BG_C$ are perspective with perspector H'.