The Nagel, Gergonne, and Feuerbach points and its properties

1. Introductory problems. Solutions

A.Yakubov, A.Zaykov, M.Didin, P.Kozhevnikov, D.Krekov, A.Zaslavsky, O..Zaslavsky

1. Follows from the Ceva theorem.
2. Follows from the Ceva theorem.
3. Consider the homothety with center M and coefficient -2 .

3'. Use the assertion of problem 3 and the homothety with center M and coefficient -2 .
4. Follows from the Ceva theorem.
5. Follows from the Ceva theorem.
6. Follows from the Ceva theorem.
7. It is kn0wn that $B A_{0}=C A_{A}$, hence $A^{\prime \prime}$ is the midpoint of segment $A_{0} A_{A}$. By the definition of isotimic conjugation N lies on $A A_{A}$. Take the homothety with center A transforming the excircle touching the side $B C$ to the incircle. Let it map A_{A} to A_{A}^{\prime}. The tangent to the incircle at A_{A}^{\prime} is parallel to eh tangent to the excircle at A_{A} coinciding with the line $B C$. Also it is clear that A_{A}^{\prime} is distinct from A_{0}. Therefore A_{0} and A_{A}^{\prime} are opposite and I is the midpoint of $A_{0} A_{A}^{\prime}$. Hence $A^{\prime \prime} I$ is a medial line of $\triangle A_{A}^{\prime} A_{0} A_{A}$. Hence $A A_{A} \| A^{\prime \prime} I$. Similarly $B B_{B}\left\|B^{\prime \prime} I ; C C_{C}\right\| C^{\prime \prime} I$. Therefore the homothety with center M and coefficient -2 transforming $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ to $\triangle A B C$ maps I to N. Thus M divides $I N$ in ratio 1:2.

The assertion for the segments $I_{A} N_{A}, I_{B} N_{B}, I_{C} N_{C}$ may be proved similarly.
8. The internal and the external bisectors of an arbitrary angle are perpendicular. Therefore I is the orthocenter of triangle $I_{A} I_{B} I_{C}$, and I_{A}, I_{B}, I_{C} are the orthocenters of $\triangle I I_{B} I_{C}, \triangle I_{A} I I_{C}, \triangle I_{A} I_{B} I$ respectively. The points A, B, C are the feet of altitudes in these four triangles, Therefore O is the center of their common nine-point-circle. The center of NPC bisects the segment between the circumcenter and the orthocenter. From this we obtain the required assertion.

9. We proved above that $\frac{\overline{H^{\prime} M}}{\overline{H^{\prime} O}}=\frac{4}{3} ; \frac{\overline{N I}}{N M}=\frac{3}{2} ; \overline{\frac{B e O}{B e I}}=\frac{1}{2}$. Using the Menelaus theorem to $\triangle O M I$, we obtain that $H^{\prime}, N, B e$ are collinear. Now using the Menelaus theorem to the line $M O$ and the triangle $I B e N$ we obtain that $\frac{\overline{H^{\prime} B e}}{\overline{H^{\prime} N}}=\frac{\overline{O B e}}{\overline{O I}} \cdot \frac{\overline{M I}}{M N}$
$\frac{\frac{O B e}{O B}}{\overline{O I}}=-1 ; \frac{\overline{M I}}{M N}=-\frac{1}{2}$. Hence $\frac{\overline{H^{\prime} B e}}{\overline{H^{\prime} N}}=\frac{1}{2}$, i.e. $B e$ is the midpoint of $H^{\prime} N$.

The assertion for $B e_{A}, B e_{B}, B e_{C}$ may be proved similarly.
Remark. Let l be the line passing through $H^{\prime}, B e, N$. Define the lines l_{A}, l_{B}, l_{C} similarly. If $\triangle A B C$ is not isosceles, then the lines l, l_{A}, l_{B}, l_{C} are distinct. In fact, suppose for example that l and l_{A} coincide. Consider the homothety with center M and coefficient $-\frac{1}{2}$. It maps N, N_{A}, N_{B}, N_{C} to I, I_{A}, I_{B}, I_{C} respectively, also it maps H^{\prime} to H. If l and l_{A} coincide, then I_{A}, I, H are collinear. Hence these points lie on the bisector of angle $B A C$. This line is also the altitude because it passes through H, therefore $A B C$ is isosceles contradictory.
10. The points A, A_{A}, G_{A} are collinear. Similarly C, C_{C}, G_{C} are collinear. By the Pappus theorem $A C_{C} \cap C A_{A}, C_{C} G_{A} \cap A_{A} G_{C}, A G_{C} \cap C G_{A}$ are collinear. Since $A C_{C} \cap C A_{A}=B$ we have to prove that $A G_{C} \cap C G_{A}$ lies on $B G$. But $A G_{C}$ passes through $A_{C}, C G_{A}$ passes through C_{A}, and $B G$ passes through B_{0}. Therefore the lines $A G_{C}, C G_{A}, B G$ pass through N_{B}.

11'. Use the Pappus theorem to A, A_{A}, G_{A} and C, G_{C}, C_{C}. We obtain that $A C_{C} \cap C G_{A}, C_{C} A_{A} \cap G_{A} G_{C}, A G_{C} \cap C A_{A}$ are collinear. Note that $A C_{C} \cap$ $C G_{A}=C_{A} ; A G_{C} \cap C A_{A}=A_{C}$. Therefore the lines $C_{C} A_{A}, C_{A} A_{C}, G_{A} G_{C}$ concur.

The segments $B C_{A}$ and $B A_{A}$ are congruent as two tangents to the excircle touching $B C$. Hence C_{A} and A_{A} wrt the external bisector of angle B. Similarly C_{C} and A_{C} are symmetric wrt the external bisector of angle B. Therefore the lines $A_{A} C_{C}$ and $A_{C} C_{A}$ meet on $I_{A} I_{C}$. Hence the lines $C_{C} A_{A}$, $C_{A} A_{C}, G_{A} G_{C}, I_{A} I_{C}$ concur.

11. Similarly we can prove for example that $A_{B} C_{0}, C_{B} A_{0}, G_{B} G, B I$ concur, applying the Pappus theorem to A, G_{B}, B_{A} and C, C_{0}, G.
12. By the assertion of problem 11 the lines $A_{A} C_{C}, G_{A} G_{C}, I_{A} I_{C}$ concur. Therefore the triangles $A_{A} G_{A} I_{A}$ and $C_{C} G_{C} I_{C}$ are perspective. By the Desargues theorem the points $A_{A} G_{A} \cap C_{C} G_{C}, A_{A} I_{A} \cap C_{C} I_{C}, G_{A} I_{A} \cap G_{C} I_{C}$ are collinear. Now $A_{A} G_{A} \cap C_{C} G_{C}=N$, the triangle $A B C$ is the orthotriangle of $\triangle I_{A} I_{B} I_{C}$. Since $I_{C} C_{C} \perp A B$ (the sideline of the orthotriangle), we obtain that $I_{C} C_{C}$ passes through the circumcenter of $\triangle I_{A} I_{B} I_{C}$. Similarly $I_{A} A_{A}$ passes through this circumcenter. Thus $A_{A} I_{A} \cap C_{C} I_{C}=B e$. Hence

12'. Using the Desargues theorem to $\triangle C_{A} G_{A} I_{A}$ and $\triangle A_{C} G_{C} I_{C}$, we obtain thah $I_{A} G_{A} \cap I_{C} G_{C}, B e_{B}, N_{B}$ are collinear.
13. By the assertion of problem $12, I_{A} G_{A} \cap I_{C} G_{C}$ lies on l. Similarly $I_{A} G_{A} \cap$ $I_{C} G_{C}$ lies on l_{B}. If $\triangle A B C$ is not isosceles l and l_{B} are distinct. By the assertion of problem 9 both lines pass through H^{\prime}. Therefore $I_{A} G_{A} \cap I_{C} G_{C}=$ H^{\prime}. Similarly $I G$ and $I_{B} G_{B}$ pass through H^{\prime}. It is clear that the assertion is also correct for isosceles triangles.

