What is a color of my hat?

The following problem is well known, but if you miss it before, please, consider it as a challenge. We will
discuss this problem after the opening of the conference, it will not affect on results of the competition. The
object in the problem has 4 states only!

Intellectual CHALLENGE: the number 4 against milliards of neurons of your brain!

Black or white hats are placed on your and on mine heads. You see my hat, I see your hat, but none of us sees
the hat on his own head. Each of us (without any sort of communications) must try to guess the color of his hat.
When a signal is given each of us simultaneously says one word only: «black» or «white». We will win if and only
if at least one of us has guessed correctly. Before this test we hold a consultation. How should we act in order to
win in all possible situations?

1 Several problems about sages

Several sages take part in the following TEST. There are a lot of hats of k different colors. The emcee places
hats on the sages’ heads. Each sage sees the hats of all other sages and does not see his own hat. The sages do
not communicate. When a signal is given they simultaneously name one of colors. The sages win if and only if at
least one of them has guessed correctly.

The sages hold a CONSULTATION before the test in order to coordinate their strategy during the test.
Repeat that the only form of action is allowed during the test: to say one word just after a signal (independently
of other sages). The strategy of sages should be deterministic, i.e. each sage decision is determined uniquely by
the hats of other sages.

1.1. There are hats of n colors and n sages. Prove that the sages win.

1.2. There are hats of three colors and n sages are arranged in a line so that each sage can see only his
neighbours (the leftmost and rightmost sage see one neighbour). Prove that the sages loose.

a)n =3, b) n = 4; c) n is arbitrary.
1.3. There are hats of k colors and 10k sages (everybody sees all others). Prove that 10 sages can guess
their colors correctly, but in general situation none 11 sages guess their colors correctly.

1.4. There are 4k — 1 sages, 2k black hats and 2k white hats. The emcee hides one hat and all other
hats place on the sages’ heads. What maximal number of sages can guess their color correctly?

1.5. Four sages stand around a non-transparent baobab. The hats are of three colors. A sage sees only
his two neighbours. How should they act to win?

1.6. Sages has hats of two colors. It is allowed to say «pass» during guessing, that means that a sage do
not make a guess. The sages win if and only if at least one of them has guessed correctly and none of
them has guessed incorrectly. We assume that all hats placements have equal probabilities and the sages
strategy is deterministic as in previous problems. It is clear that now the sages can not to guarantee
100 % victory. For example a strategy «Sage A always says “black” and all others say “pass”» wins in one
half of all possible cases. We call a strategy optimal if it wins the most number of all possible cases.

a) Find a strategy that wins in more than 50 % cases.

b) Find an optimal strategy and prove that it is optimal.

2 Sages on a non oriented graph

We will consider the following general problem. Let G be a non oriented graph and let sages live at its vertices:
one sage occupies one vertex. All the sages are familiar with each other and all of them know the whole placement
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of sages on the vertices of the graph. In particular, each sage understand in what vertex do he and his neighbours
live. We will identify a vertex and the sage in it. During the test each sage sees only the hats of sages in the
adjacent vertices. Other rules are the same: during the consultation the sages should choose a strategy that allows
at least one of them to guess the color of his hat correctly.

We will use the following formalism. Let the colors of hats be numbered from 1 to k and let C = {1,2,...,k}.
For each vertex v of G order the adjacent vertices by increasing of their numbers (denote by d the number of
these vertices): Up, , Un,, - - - Un,. A strategy of the sage v is a function f,: C X C x --- x C — C. The sages choose

d times
these functions on the consultation. During the test a sage v calculates f,(c1,co,...,cq), where ¢; € C is a color
of the sage in the vertex vy,.

The problem 1.1 shows that if the graph G contains a k-clique, then at least one sage can guess the color of
his hat correctly. But if the graph does not contain a k-clique, the question becomes non trivial.

2.1. Let £>3. Prove that for 4-vertex graph “chicken feet” the sages loose.
2.2. . Prove that for an arbitrary tree the sages loose (k > 3).

Now let n sages live at the vertices of a cycle, k = 3. Let V be a 3-element set of hats colors. Denote by V; =V
the set of colors of hats that will be placed on the head of the i-th sage. Assume that the sages have chosen a
strategy. That means that i-th sage has a function f;: V;_1 x Vi1 — V; (we use cyclical numbering). A sequence
of colors abe, where a € V;_1, b € V;, ¢ € Vi41, is called a short disproving chain if b # f;(a,c). A long sequence
S = 5189...8m, where s1 € Vi, so € Vg1, ..., S € Vigm—1, is called a disproving chain if each its 3-element
consecutive subsequence is a short disproving chain. For every disproving chain S denote by ¢, (.S) the number of
continuations of this sequence by one step to the right, i.e. the number of ways to choose a color $;,41 € Virm
that gives us a longer disproving chain. Denote by ¢_(.S) the analogous number of continuations by one step to
the left.

2.3. Let n sages live at the vertices of a cycle, k = 3. Prove that if there exists a disproving chain
S = 8182...8m, where 2 < m < n — 1, for which the inequality ¢_(s182) + ¢4 (Sm—15m) = b holds then
the strategy of sages does not win.

2.4. Let n sages live at the vertices of a cycle, k = 3. Let the sages choose a winning strategy. Prove
that for each sage ¢ and any pair of colors a € V;_1, b € V; the equality ¢_(ab) + ¢ (ab) = 4 holds.

2.5. Prove that for £ = 3 the sages win on the graph “a cycle of 3n vertices”.

2.6. Prove that for k = 3 the sages loose on the graph “a cycle of n vertices”, where n is not divisible by
3 and n # 4.
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The following problems show that the sages can win in graphs without big cliques.

2.7. Prove that for any number of hats k there exists a bipartite graph for which the sages win.

2.8. Let G be a graph for which the sages win when the number of colors equals ¢. Let K, be a complete
graph on 7 vertices (we know that the sages win on this graph when the number of colors equals 7).
Construct a new “big” graph . For this replace each vertex of the graph G by a copy of graph K,. If
the two vertices were adjacent in G draw the edges between all pairs of vertices in the corresponding
copies of K. The obtained graph is G. N

Prove that the sages win on the graph G when the number of colors equals k = gr.

2.9. Prove that for k = 3m there exists a graph with 4m vertices and maximal clique of size at most
2m, for which the sages win.

3 Sages on an oriented graph

Now let the sages live at the vertices of oriented graph; the sage A sees the sage B if and only if the graph
contains an oriented edge AB.

3.1. Prove that the sages win on the graph “oriented cycle of n edges” (k = 2).

3.2. Denote by ¢ the maximal number of vertex dijoint cycles in a graph. Prove that there exist graphs
for which more than ¢ sages can guess the colors correctly (k = 2).

3.3. Let a be the minimum number of vertices whose removal makes the graph acyclic. Prove that at
most a sages can guess the colors correctly (k = 2).

3.4. An oriented graph G is called semibipartite if its vertex set can be split onto two parts L and R so
that there no edges between vertices of L, and R is acyclic (the edges from L to R and from R to L are
not forbidden).

Let the sages have hats of k colors and s be an arbitrary non negative integer. Prove that the sages
loose on a semibipartite graph if |L| = k — 2, |R| = s.

After semifinal

Variations of previous topics

2.10. There are three sages A, B, C, each sees each other, except that the sage A does not see the sage
B; k = 3. Prove that sages loose.

2.11. Four sages stand around a non-transparent baobab. The hats are of three colors. A sage sees only
two his neighbours, except one sage who sees only one his neighbour. Can the sages win?

Let n sages stand at the vertices of a cycle, k = 3. Suppose that sages chose a winning strategy. The pair of
colors ab, where a € V;, b € V1, will be called a left pair, if £_(ab) = 1, will be called a right pair, if £_(ab) = 3,
and will be called an inert pair, if £_(ab) = 2.

2.12. Prove that the number of left pairs equals the number of right pair among all the pairs ab, such
that a € V;, b € V1.

2.13. Let ab be a right pair of colors, a € V;, b € V;;1. Prove that among the pairs of colors cja, caa,
csa, such that {c1,co,c3} = Vi_1, there is exactly one left pair, exactly one right pair and exactly one
inert pair.
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2.14. The same setting as in Problem 1.4, but there are mk — 1 sages and hats of k colors, m hats of
each color, either m is even, or k is odd (possibly both is true). The emcee hides one hat. Prove that the
maximal number of sages who can guess their color correctly is %(mk +m —2).

2.15. The sages stand in two lines: n sages in the first line and n™ sages in the second lines. They have
hats of (n+ 1) colors. The sages see only sages standing in the other line. oibKo Tex, KTo cTOUT B JIpyTOii
mepenre. When a signal is given, each of the sages simultaneously names a color. Prove that the sages
can act in such a way that at least one guesses.

3.5. What maximal number of sages can guess on the following graph (k = 2)?

3\70
s

A~——D

4 Hypercube.

By an n-dimensional hypercube we mean a graph, such that its vertices are numbered by sequences of n zeroes
and ones. Two vertices are joined by an edge if and only if their numbers differ only in one digit.

4.1. Prove algebraically that 32 sages, standing in the vertices of a 5-dimensional hypercube, can win
(k=3).

Suppose that there are n sages, k = 2. Let us denote the colors of hats by one and zero. Let us fix a strategy
of the sages. Consider an n-dimensional hypercube and “encode” this strategy with it in the following way. Since
the vertices of the hypercube correspond to sequences of n zeros and ones, we relate the ith sage and the ith
element of this sequence. Consider the example for n = 5, ¢ = 2. Suppose that the ith sage sees the colors of hats
of the other sages, for instance, 1, *, 0, 1, 1 (the star means that the ith, i.e., the second sage, does not see his own
hat color). There are two vertices of the hypercube with such coordinates, namely, (1,0,0,1,1) and (1,1,0,1, 1),
moreover, these vertices are joined by an edge. The strategy of the ith sage is to choose among these two vertices.
Let us put an arrow on the corresponding edge, its tail being a non-chosen vertex, its head being a chosen vertex.
Putting such arrows on all the edges, we get an illustration of the strategy.

For example, the strategy of sages from the Intellectual CHALLENGE can be described by the following
orientation of the 2-dimensional hypercube:

(0,1) (1,1)

(0,0) (1,0)

4.2. Suppose that there are n sages, hats can be red or blue. Each sage sees each other. As we know
from Problem 1.3, [n/2] sages can guess their color correctly. Suppose that there exists a “balanced with
respect to colors” strategy: such that for every distribution of hats, if there are r red and b blue hats, it
is true that at least [rr/2] sages with red hats guess, and at least [b/2] sages with blue hats guess.

4.3. Suppose that 2n sages use the optimal strategy, i.e., the strategy which leads to at least n guesses.
Prove that this strategy is “unbiased” (with respect to one of the colors), namely: for every sage it is
true, that if we consider all the distributions of hats, he says “red” in exactly half of the cases and “blue”
in the other half of the cases according to his strategy.
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Solutions

1.1. Let us label colors by residues modulo n. Every sage sees all the hat besides his own one. Let kth
sage check the hypothesis “the sum of all the hats equals £ modulo n. Then exactly one sage guesses.

1.2. This is a partial case of Problem 2.2.

1.3. [1, Theorem 2]

First we present a strategy for 10. Divide 10k sages into 10 groups of k sages each, and use Problem 1.1.

Assume there exists a strategy, that guarantees at least 11 correct guesses in each situation. Consider
all k%% ways to arrange colors to hats. Consider the k situations, that differ only in the color of the first
hat. Since the strategy is deterministic, in all these situations the first sage will name the same color.
Thus in these k situations the first sage will make only one correct guess. Dividing all k%% situations
into k9%~ groups of k, we get that the first sage will make just k'°%%~! correct guesses. The same holds
true for every other sage, thus in total there are 10k - k%~ correct guesses, which is not enough to have
11 correct guesses in each of k'F situations.

1.4. [3, 4.2] Consider a sage. If the color of his hat coincides with the color of the hidden one, then he
sees 2k hats of one color and 2k — 2 hats of another, thus he is sure that his hat is of minority color.

If his hat and the hidden one have different colors, then call this sage in this situation a doubting sage.
Arguing analogously to 1.3 we prove that each sage makes a correct guess in exactly half of situations,
in which he is a doubting sage. Indeed, let some sage i is doubting in some situation A. Construct the
situation h;(A): take sage’s hat and the hidden one and change there places. The sage i is still doubting,
but since we did not change hats of all other sages, he must name the same color in both situations.
Thus no strategy can guarantee more then 2k — 1 + % = 3k — 1 correct guesses.

So, we need to construct a strategy, where exactly half of doubting sages guess correctly in each
situation. We do it in the following way.

Make the list of all (32) situations and mark all doubting sages in each of them. We will take a pair
of sage ¢ and situation Aj, such that sage ¢ is doubting in situation A;, and thus also in situation h;(A7).
Set our strategy to order the sage i name the color of hat in the situation A; whenever he sees what he
should see in the situation A;. Thus he will make the right guess in A; and the wrong one in h;(A4;). Call
hi(A1) = As find another doubting sage in Ay and do the same. Thus in Ag there will be two sages, who’s
actions are already determined, and one of them makes the right guess, another one wrong. We continue
this process until A = Ay. At this moment for each situation there are equal amounts of doubting sages,
making right and wrong guesses. If not all the doubting sages have their actions determined — continue
this process.

1.5. This problem was taken from [7]. We present you the solution after M. Ivanov, which in fact describes
the same strategy as in [7], but is more elegant due to its algebraic formulation.

Let us label colors with residues 0, 1, 2 modulo 3. We need to find functions f4(D, B), fs(A4,C),
Fo(B, D), fp(C, A) such that for any values of A, B, C, D at least one function coincides with the value
of the corresponding variable modulo 3.

Let us try to find linear functions satisfying these conditions.

First, find the expressions of the form A+ B+ C + const, A+ C £+ D + const, A+ B + D + const,
B £ C £+ D + const such that for any A, B, C, D at least one of these expressions is divisible by 3. For
this, note that

(A+B+C)?*+(A-C+D)*+(A-B-D)?+(B-C-D)*= (1)
=3(A2+B*+C?+D* =0 (mod3).
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If for some A, B, C, D every expression
A+B+C, A-C+D, A-B-D, B-C-D (2)

is nonzero modulo 3, then the squares of these expressions have residues 1 modulo 3, and the sum (1)
is not divisible by 3. It means that for any integers A, B, C, D, at least one of the expressions (2) is
divisible by 3.

Now let fp = —-A—-C, fp=C— A, fAr=B+ D, fo = B— D. We can formulate a “recipe” for
every sage: sage A says B+ D, sage B says —A — C, sage C says B — D, sage D says C' — A.

Remark. Formula (1) is just the product (4% + B2+ C% + D?)(1%2 + 12 + 12 + 0?), rewritten with the
help of the Euler formula

(A24+ B2+ C?+ D) (a®+ 0>+ P +d?) =
= (Aa+ Bb+ Cc+ Dd)* + (Ac — Ca + Db — Bd)*+
+ (Ab — Ba + Cd — Dc)* + (Ad — Da + Be — Cb)2.

1.6. [2, p. 160]

2.1. Suppose that sages have a strategy which wins. Let v be the center of the foot, and let uy, uo, us
be terminal vertices. Temporarily let v be of the 1st color. Suppose that sages w1, uo, us say colors hy,
ho, hs according to their strategies.

Now perform another test: let now v be of the 2nd color. Suppose that sages w1, uo, us say colors ey,
eo, e3 according to their strategies.

Now perform the final test. For every i = 1, 2, 3 we denote by d; which was not said by the sage w;
in the first two test (if two colors are possible, we choose any one). For every i, we assign the color d; to
the vertex wu;. Since now v knows the colors of all his neighbors, we can predict his answer with respect
to his strategy. One of the colors 1 and 2 does not coincide with this answer, so we assign v this color,
and sages loose.

2.2. This is Lemma 8 from [1].

Using induction on the number of vertices, we prove the following statement. Let T" be any tree, let
v be any its vertex, and let ¢y, co be two arbitrary colors. Suppose that sages have already chosen a
strategy I'. Then there exists a distribution of hats into vertices, such that sages loose and, moreover,
the vertex v has either color ¢; or color c¢s.

Base of induction: if 7" has only one vertex. This is trivial.

Now we prove the induction step. If we delete the vertex v, the tree T will split into parts 11, 15, .. ..
Let us denote by w1, ue, ...the vertices in these subgraphs, which were adjacent to v in T. As we did
in the solution of the previous problem, we perform two tests. In the first one, we color vertex v in the
color ¢1 and for every 7 consider all the distributions of hats in the subtree T; which are losing for sages
if sages use strategy I' in T;. Let H; be the set of colors which u; can take in these losing distributions.
In the second test, let v be of color ¢y and for every i let E; be the set of colors which u; can have in all
the losing distributions.

Note that in both experiments, the strategies of sages on every tree T; differ only by the functions of
the sage u;. It means that if we manage to fix the hat color in the vertex u;, then for every distribution
of hats on the tree T; the other sages would say the same color in both experiments.

By the induction hypothesis, each set H; and U; contains at least two elements, hence for every 1
the intersection of H; and E; is nonempty. For each i, choose any color d; from H; N E;. Now we can
construct the losing distribution: each u; will be of color d;, every tree T; will be colored in such a way
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that the sages loose, and it remains to color v. Since we know the colors of all its neighbours, we know
the answer of v. It does not coincide with one of ¢; and ¢y, so we assign v this color. Now the sages
loose.

2.3. |7, Lemma 2c]

Suppose that if 4 (s;,—15m) = 2, then this chain can be extended to the right by adding a vertex s,,+1
in such a way that s1s9...$p4+1 is again a disproving chain for which the inequality £ (Sp,Smy1) = 2 is
held.

Indeed, potentially we have two (or even three) such extension, denote them by s,,v; and s,,vs.
Consider the short disproving chains s, viw u sp,vow, and let us call it perspective if v; # fi+1(Sm, w)
(we take any of them if both satisfy this condition). In the same way we choose perspective chains for
two other values of w. Now we have three perspective chains, and at least two of them have the same
color (either vy or vy) of the next vertex. So let s,,+1 be this value of v;.

Now without loss of generality let us assume that £_(s182) = 3, 4 (Sm—15m) = 2. We can unlimitedly
extend it to the right. It remains to check that we can loop it. Just before this, we have a long disproving
chain zs1ssy...s,_1y, where x has three possibilities and y has at least two possibilities. So there exists
x =y such that = # f(sp—151).

We obtained a cyclic disproving chain, and the sages loose.

2.4. |7, Lemma 2d]

If there exists a two-element disproving chain s1sy such that ¢_(s1s2) + ¢4 (s152) > 4, then the sages
loose by the previous problem.

On the other hand, note that for a fixed s, we have

C(ss1) + €4 (s5) + L4 (s3) = 6 (3)

(here s1, s2, s3 are three distinct colors). Indeed, if we fix color w, then there exists exactly two colors s;
such that s; # f(s,w). Since there are three possibilities for w, there are six possible continuations.
It means that

Z €+(8182) = 18. (4)

51,82

Hence, the mean value of /4 (s1s2) is 2. We can similarly show that the mean value of ¢_(s;s2) is 2.
Now let us solve the problem. Note that if for any two-element chain syso the inequality ¢_(s1s2) +
04 (s1s2) < 4 is held, then there exists another chain ss5 such that (_(s]s5) + €4 (s]s5) > 4, and the
sages loose.
Hence, the winning strategy can exist only if /_(s152) + ¢4 (s152) = 4 for any s1, sa.

2.5. [7]

Construct a strategy of sages on the cycle of N = 3n vertices, such that the emcee could not construct
a disproving chain.

First, we deduce from Problems 2.12 and 2.13 that for a winning strategy, the number of right pairs
of colors ab, where a € V;, b € V1, is the same for all i. (In the same way the number of left pairs is
equal and the number of inert pairs is equal). It would imply that any chain, which disproves a winning
strategy, contains links of the same type (i.e., either all the pairs of colors are right, or all the pairs of
colors are left, or all the pairs of colors are inert), in this case all the chain will be called right /left /inert.
Indeed, as we see in the solution of Problem 2.13, any left pair of colors ab; has a unique extension to
the left to a more long chain cjaby, and the pair ¢1b is again left. In the same way a right chain can be
uniquely extended to the right in such a way that its right link will be again a short right chain. Hence,
if there exists a chain disproving all the sages, it contains links of the same type.
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Now we find a strategy for the sages such that for all 4, there are three right pairs ab, a € V;,
b € Viq1, three left pairs and three inert pairs. So elements of V; can be enumerated in such a way

V; = {v}, v}, vt} that the chains vivivd ... viv3vs ... vivde3 ... areright. We give here the beginnings of
these chains, but it can occur that if we loop them, they do not loop with period N, and for the extension
vivivd .. U{VU{V—H it turns out that v} ™ = v or v = vl Denote v} = v;(l), ARREE Ui(?)’

év = UU(3), clearly, o is a permutation of the three-element set. So the aim of the sages is the following:

invent a strategy such that local disproving chains could not loop in an N-element chain because of a
permutation o which has no fixed elements. The same should be true for left chains and for inert chains.
Let us examine these chains using the enumerations of colors introduced above.

We have three left pairs ab, a € V;, b € V;11, we may assume that these are pairs viv?l, UQUi'H,

U3’U§+1 There are also three left pairs among ab, a € V;_1, b € V;. Notice that a pair Ugflvg is right, hence,

the chain vg~ v3v§+1 is not a short disproving chain, consequently, v5~ 1121)1“ is a disproving chain, and
this means that the pair vé 1v2 is a “disproving extension” to the left of the pair v%viﬂ, which means

that the pair vg 1112 is again left. Using the same reasoning for the other pairs of indices, we obtain that

foralli (i=1,2,..., N) the set of left pairs ab, a € V;, b € Vj;1, consists of pairs
vivstt, vttt vivsth,
But then the left chain which begins with the color v1 has the form v{v3v3vf ... soits (N + 1)th element

(recall that 3 | N) has the form vé\ﬁ'l. Hence, the left chain will not loop if the permutation o has no
fixed elements. The same is true for the inert chains.

It remains to describe the strategy which will provide such a picture. Suppose that all the sages use
the same strategy:

2 1 1
fi=l2 3 2], i=12..N
33 1

where the element in the pth row and in the gth column is equal to f;(p, ¢), and at the end viNJrl = vi(i),

where 0 : 1 —+ 2 — 3 — 1 is an appropriate permutation of the three-element set. In other words, if
vi =1, vl =2, vg =3 for 1 <7< N, then U{VH =2, vévﬂ =3, véVH = 1. This is due to the property
fi(a(p),o(q)) = o(fi(p,q)), which can be easily checked.

We leave to the reader the proof of the fact that this strategy has equal number of right, left and
inert chains.

2.6. [7]

2.7. [1, Theorem 7|. The statement of Problem 3.4 hints that one or the parts of the graph must contain
at least k£ — 1 vertices. It happens that this estimation is exact.

Let G be a complete bipartite graph with n = k — 1 vertices on the left side and m = k*" vertices
on the right side. Let C' denote the set of all k-colorings of the left side of G. Note that |C| =
and m = k€|, hence m is equal to the number of mappings from C to {1,2,...,k}. Pick a one-to-one
correspondence between the vertices on the right side of G and the mappings from C to {1,2,...,k}, and
let each vertex on the right side of G' guess its color using the corresponding mapping.

We need the following lemma.

Lemma. Let cg denote a fixed coloring of the right side of G, and let C’ denote the set of all
colorings ¢y, of the left side of G such that the combined coloring (cr,cgr) causes every vertex on the
right side to guess its color incorrectly. Then |C’| < k.

Now it’s time to define the guessing strategies used by the vertices on the left side of G. Given the
coloring of the right side, the set C’ defined in the lemma above has at most n = k — 1 elements. So let
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c1,¢2,...,cy be a list of colorings which contains every element of C’. For i =1, 2, ..., n, vertex i on the
left guesses that its color is ¢;(i). This guessing strategy (combined with the guessing strategy for the
vertices on the right side as defined above) guarantees at least one correct answer. This is because the
above lemma guarantees that at least one vertex on the right side guesses correctly unless the coloring
of the left side belongs to C’. But if the coloring of the left side belongs to C’, then it is equal to ¢; for
some i € {1,2,...,n}, in which case vertex i on the left guesses its color correctly.

It remains to prove the lemma. The proof follows from noting that if C’ contains k distinct elements
1,2, ... ,C, then there exists a function f from C to {1,2,...,k} which assumes k distinct values on
the set {c1,...,cr}. Let v denote the vertex on the right side of G corresponding to f. Since the set
{f(c1), f(c2), ..., f(ck)} contains all k colors, we must have f(c;) = cR(v) for some iin 1, 2,..., k. Thus,
the combined coloring (¢;, cr) causes vertex v to guess its color correctly, contradicting our assumption
that ¢; belongs to C’, ending the proof.

2.8. This is Lemma 1 from [4]. We re-write this proof here in a more readable way.

The sages win on the graph G, when they have hats of ¢ colors. Let us call these colors warm. The
sages win on the graph K, when they have hats of r colors. Let us call these colors cold. In order to
color the graph G into gr colors, we have to assign a warm color and a cold color to each vertex. During
the test, the sages will also say two colors: a warm one and a cold one.

To choose a cold color, the sages will look only on the other sages in their copy of K, (and taking
into account only the cold components of their colors). Then for every copy of K,, exactly one sage will
guess his cold color correctly, we call them lucky. Every sage can understand which sage is lucky in every
adjacent copy of K. To guess his warm color, every sage uses his strategy on the graph G, assuming
that his neighbors on G have the colors of lucky sages on the K,s corresponding to vertices of G and
taking into account only the warm component of their color. Then at least one lucky sage will guess his
color correctly.

2.9. This graph can be obtained from Problems 1.5 and 2.8.

2.10. Let us perform the same computation as we did in Problem 1.3. Let us sum up the number of all
guesses in all the distributions of hats. On one hand, there are 3 - 32 guesses. On the other hand, there
are 33 distributions of hats, so if the strategy of sages is winning, there is exactly one guess in every
distribution.

Now fix any strategy and present a distribution of hats where at least two sages guess. Let us assign
any color to the sage C. Then give A the hat of color which he says with respect to his strategy for this
color of C. npoussosibayio nuisiny. Now let B be of the color which he says with respect to his strategy
for these colors of A and C.

2.11. Denote the sages by A, B, C', D, and suppose that A does not see B. First of all we show, that
there exist two three-element chains ajdic; and ajdycs such that A and D do not guess. For this, as we
did in the proof of Problem 2.4, consider all the 6 distributions of colors to A and D in such a way that
A does not guess (his strategy depends only on the color of D), and 18 possibilities to extend this chain
in the direction of C. Since in total D guesses only in 9 situations, there is a color d; which he says at
most three times. Then among the chains with the beginnings a1d; or asd; there are at least three losing
for D, and by the Pigeonhole Principle there are two three-element chains aidic; and aidice such that
A and D loose. Give A and D hats of colors a; and dy, respectively.

Now consider the strategy of B. Let fg(ai,c1) = b1, fp(a,c2) = by. Let us give him a hat of the
third color b3 (of any possible color, if by = by).

Notice that now we know the colors of C’s neighbors: B has color by and D has color dy. But fc (b1, dy)
does not coincide with one of ¢y, ¢co. If we give the sage C the non appropriate color, the sages loose.
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2.12. |7, Lemma 3a] We use formula (4) and the analogous formula for ¢_:
> ti(ab) => 0 (ab) = 18.
a,b a,b

Since we consider a winning strategy, for any a, b ¢4 (ab) + ¢_(ab) = 4. Hence, any summand 1, 2, 3 in
the first sum corresponds to a summand 3, 2, 1 in the second sum. It means that both sums contain the
same number of 1s and 3s.

2.13. |7, Lemma 3d| Let Viy; = {b,b1,b2}. Then, as in Formula (3), and taking into account that
0_(s182) 4+ €4 (s182) = 4 we have

0_(ab) 4+ ¢_(aby) + ¢_(abs) = 6.

Since ¢_(ab) = 3, two other summands are 1 and 2, we may assume that ¢_(aby) = 1, it means that
there exists a short disproving chain, say, cjab;. But then ¢_(cia) = 1, since in the opposite case
{_(c1a) + €4 (aby) > 5 and the strategy is losing by Problem 2.3. We apply the analogous formula

l_(cra) +0_(coa) + ¥ _(c3a) =6
and see that {_(cia) = 1, hence, two other summands are 2 and 3. We are done.
2.14. |1, Theorem 16.iii|

2.15. [4]

3.1. All the sages, besides the last one, say the color opposite to the color they see. The last sage says
the color he sees.

3.2. [1, Example 6] It follows from Problem 3.1 that at least ¢ sages can guess the color of their hat. In
Problem 3.5 you can find the example of the graph for which the number of sages is greater than the
number of independent cycles.

3.3. [1, Lemma 4] Suppose that the graph becomes acyclic after deleting vertices v, va, ..., v4. Number
the remaining vertices vg41, ..., vy in such a way that the numbers along every edge decrease. In other
words, for the last n — a vertices all the edges are directed to the left. Now let us arbitrarily distribute
hats among the first a sages. For every next sage, the colors of hats which he sees are already determined,
so his answer with respect to his strategy is known. We can give him a hat of another color so that he
does not guess.

For this distribution of hats only the first a sages can guess their color.

3.4. This is Theorem 5 from [4]

Take any sages’ strategy f and prove that it is losing.

Let A be the set of all but one colors of hats, |A| = k — 1. If a is a color, we denote by w, the
collection of k — 2 colors (a,a,...,a). The sages from L will always get the same hats of colors wg, where
a € A.

Let us enumerate the vertices of R by r1, ro, ...7s in such a way that the numbers along every edge
decrease. To simplify the reasoning, we consider only the case when every sage from R sees all the sages
with less numbers. Construct the collection of colors Y = {y1,...,ys} for the sages in R. For this, we
consequently take

y1 ¢ {fr,(wa), a € A}
Y2 ¢ {fm(wa7y1)7 a € A};

Ys & {fro(Was y1,92- -+, ys—1), a € A}.
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Let us explain these formulas for ys. The sage in the vertex rg sees all the sages from the part L (their
colors are given by the collection w,), and he sees the sages from part R with smaller numbers. Hence,
we know his answer f, (wq,y1,¥y2...,Ys—1) according to his strategy. The color a takes values in the
(k — 1)-element set A; the set in the right hand of the formula for ys contains at most k — 1 elements,
hence, we can choose the appropriate color ys according to this formula.

Now the set of colors Y is constructed. Let £1, £, ...f,_o be the vertices of L. Choose a color b € A
which coincides with none of the colors fo, (Y), ..., fr,_,(Y). Then no sage guesses his color for the
distribution (wy,Y").

3.5. [1, Example 4]

4.1. Let us present an equality analogous to (1), and with its help construct linear functions, giving the
strategies of sages. Since this equality is too long, we will not write it here, so we need some preliminary
work.

By an N-dimensional hypercube @y we mean a graph, which contains 2%V vertices, enumerated by
N-digit numbers in the binary number system, and the edges join numbers differing only in one binary
digit. The next constructions can be applied to any hypercube, however they are applicable to the
problem about hats only for N =2 (mod 3).

Lemm a. The edges of the hypercube @ can be oriented in such a way that every 4-cycle in @ will
contain 3 edges pointing to one direction of bypass of this cycle and one edge in the opposite direction.

~~—

Proof. Induction on N. Base N = 2. TJ

The step of induction. Suppose that we have already oriented the graph Qy. We may assume
that @,41 consists of two copies of Qp, the “left” one and the ‘“right” one, and for every vertex of
the left copy there is an edge to the corresponding vertex of the right copy. Suppose that we have
already oriented all the edges in the left copy according to the induction hypothesis, and let us orient
the right copy in the opposite way. For the edges between the copies, all the arrows will point to the
right. It is easy to see that this orientation satisfies the conditions. O

Now let us take independent variables, one for each vertex of Q.

Recall that every vertex of @y has degree N. Suppose that a is an arbitrary vertex of the graph; by,
by, ...are vertices such that there are arrows from a to them, c1, co, ...are vertices such that there are
edges from them to a. For any a consider the expression f,, equal to the square of the linear combination

fa:(a+b1+b2+...—01—CQ—...)Z. (5)

Consider the sum ) f, of these squares within all the vertices of the graph. Now open all the brackets.
For every vertex a, the summands of the form a? will appear in this sum with multiplicity N + 1,
since every such summand appears from the brackets fo, fo,, fo,, -+, fers feo, ... and only from them.
Moreover, every edge ab corresponds to a summand +2ab, which appears from the bracket f,, and a
summand —2ab, which appears from the bracket f,. While opening the other brackets, such summands
can not appear, so they all vanish.

There is one more type of summands, from the bracket f, we obtain summands of the form —2b;c;,
let us examine them. Suppose that a has number 00, b; has number 01, ¢; has number 10. Consider also
the vertex d with number 11 (we write here only the bytes where the numbers differ). Clearly, d b
fai=(d=bj—ci+... )2, so the summand 2bjc; appears from fy with the sign “plus”. It will [ !
vanish. Another possible orientations of the edges of the cycle can be treated in the same { [
way. -

So Y fa= (N +1)- %, a2 R
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Now we come back to our sages. Let N = 2 (mod 3). Then the sum ) fq is divisible by 3. It consists
of 2V summands. Clearly, either f, = 0 or f, = 1 (mod 3). Hence, at least one of the summands f,
must be zero modulo 3 (for odd N there are at least two such summands). Using the notation of (5), we
demand that for every vertex a the sage in this vertex uses the hypothesis ¢ +co+ ... — by — by — ...
Then the sage sitting in a vertex a such that f, =0 (mod 3) will guess the color of his hat.

4.2. [1, Lemma 11] To describe the strategies, we will use the hypercube (see the text before the
formulation of the problem).

Let is cut the hypercube into layers: the ith layer will be formed by all the vertices with the sum of
coordinates equal to . The number of non-oriented edges, going from a vertex v to the vertices of the
next layer, will be called the upper degree udegv of this vertex, and the number of edges going to the
vertices of the previous layer will be called the lower degree ddegv of the vertex.

Consider the edge between the ith and (i 4 1)th layers and the corresponding sage (=the coordinate
which changes), it equals 1 in the (i+ 1)th layer and 0 in the ith layer. The strategy gives the orientation
of this edge: if it points from the ith layer to the (i + 1)st layer, then the sage will guess when his hat is
of color 1 and will loose in the opposite case. If the edge points from the (i + 1)th layer to the ith, then
the sage guesses when his hat is of color 0 and looses in the opposite case. If for every vertex v of the
ith layer the number of edges pointing from the (i + 1)th layer to this vertex equals [udegv/2], and the
number of edges pointing from the (i — 1)st layer to this vertex equals [ddegv/2], then it is easy to see
that we get a balanced strategy.

Construct a balanced strategy, i. e., orient the edges in order to fulfill the properties of upper and
lower degrees mentioned above. The idea is clear: we take any edge between the ith and (i 4 1)st layers,
put any orientation on it and construct an oriented path, adding new edges in such a way that the path
remains between the ith and (i + 1)st layers. If it is not possible to extend this path (in both directions)
but not all the edges are oriented, we start constructing a new path, etc.. When we orient all the edges,
we obtain a balanced strategy.

4.3. |1, Proposition 13] If the number of sages is even, the optimal strategy is a strategy such that for
every vertex of the hypercube, the incoming degreee and the outcoming degrees are equal. In this case,
one can construct an oriented Euler path. Now the strategy of the ith sage is the orientation of edges,
parallel to the ith coordinate line. Note that one half of the vertices of the hypercube in in the (left)
face x; = 0, and the other half in in the right face ; = 1. The arrows pointing to the left correspond to
the case when the sage says 0 and the arrows pointing to the right correspond to the case when the sage
says 1. The Euler path contains an equal number of such arrows.
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