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1 Definitions and notation

One of the most famous and fascinating objects of combinatorial geometry is the chromatic number
of a space. Before we introduce it, we remind that the space Rn, which is called the n-dimensional
Euclidean space, is just the set of all “points” x, each of which is a sequence consisting of n real numbers:
x = (x1, . . . , xn). Moreover, between any two points x = (x1, . . . , xn) and y = (y1, . . . , yn), one can find
the distance using the formula

|x− y| =
√

(x1 − y1)2 + . . .+ (xn − yn)2.

In particular, for n = 1, we get the usual line, for n = 2 — the usual plane, for n = 3 — the usual space.
The chromatic number of Rn is the quantity denoted by χ(Rn) and equal to the minimum number of

colors needed to color all the points of the space Rn, so that the distance between any two points of the
same color is not 1.

We will start from the simplest facts, which are widely known, and we will finally come to advanced
results obtained just few months before the Summer Conference. Moreover, the methods, which we shall
study, will be very different and nontrivial varying from linear algebra to probability theory and random
graphs.

2 Problems before the intermidiate finish

2.1 The simplest bounds for the chromatic number

Problem 1. Prove that χ(R1) = 2.

Solution. Clearly, one color is not enough since points 1 and 2 should be of different colors. Two colors
suffice. Indeed, let us split the line into semi-open intervals [a; a + 1), a ∈ Z, and color them in turn into
black and white.

Problem 2. Prove that χ(R2) > 4.

Solution. Clearly, the figure below cannot be colored properly into three colors.
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Problem 3. Prove that χ(R2) 6 7.

Solution. One can see that the following coloring is proper:

Problem 4. Prove that χ(R3) 6 27.

Solution. It is the particular case of Problem 7.

Problem 5. Prove that χ(R3) > 5.

Solution. It is the particular case of Problem 9.

Problem 6. Prove that χ(Rn) is finite for every n.

Solution. Problem 6 will follow from Problem 7.

Problem 7∗. Prove that χ(Rn) 6 (d
√
ne+ 1)

n
.
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Solution. Let us take some k ∈ Z and p ∈ R, tile Rn with cubes of edge kp, split each edge of some
cube into k parts, it will give a splitting of a cube into kn small cubes of edge p, then color each small
cube into its color and then shift this coloring to color the whole space. For the coloring to be proper, the
following two inequalities should hold: p

√
n 6 1, (k − 1)p > 1. But for k = d

√
ne + 1 and p = 1√

n
both

inequalities are held.

Problem 8. Prove that in Rn there is a set of n+ 1 points, whose pairwise distances are equal to 1, and
therefore, χ(Rn) > n+ 1.

Solution. Let us construct such a set of points explicitly. Let

A1 =

(√
2

2
; 0; 0; . . . ; 0; 0

)
,

A2 =

(
0;

√
2

2
; 0; . . . ; 0; 0

)
,

. . . ,

An =

(
0; 0; 0; . . . ; 0;

√
2

2

)
.

Pairwise distances between these n points are all equal to 1. Now find the (n + 1)th point of the form
S = (a; a; a; . . . ; a; a). For this we need

SAi =

√√√√(n− 1)a2 +

(
a−
√

2

2

)2

= 1,

na2 −
√

2a− 1

2
= 0.

This system gives us a quadratic equation with positive discriminant. Thus, we will find two points S1

and S2, such that for each of them and for every j = 1, 2, . . . , n, the distance between Si and Aj equals 1.

Problem 9∗. Prove that χ(Rn) > n+ 2.

Solution. Let us take two equal figures as in Problem 8, namely, S1S2A1 . . . An and T1T2B1 . . . Bn. We
can place them in Rn in such a way that S1 coincides with T1, and the distance S2T2 equals 1. Now, if we
color Rn into n+ 1 color, then the points S1 and S2 will be of one color, and the points T1 and T2 will be
of one color. Then S2 and T2 will be of one color, which is impossible.

2.2 Distance graphs of special type, their simplest properties, and the con-
nection with the chromatic number of a space

Recall that the scalar product of vectors x = (x1, . . . , xn),y = (y1, . . . , yn) in Rn is the expression

(x,y) = x1y1 + . . .+ xnyn.
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One can easily check that always

|x− y|2 = (x,x) + (y,y)− 2(x,y). (1)

Let r, s be some natural numbers. For each n ∈ N denote by G(n, r, s) the graph, whose set of vertices
is

V (n, r) = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + . . .+ xn = r}
and whose set of edges is

E(n, r, s) = {{x,y} : (x,y) = s}.
In other words, vertices are all possible vectors consisting of 0s and 1s, such that in every such vector one
has exactly r 1s and n − r 0s. In turn, those and only those vertices are joined by edges whose scalar
product equals s. Due to formula (1) one can say that edges are those and only those pairs of vertices
whose distance equals

√
2r − 2s. This is why the graphs G(n, r, s) are called distance graphs.

It is also convenient to have the following interpretation of a graph G(n, r, s). Its vertices can be
considered as all possible r-element subsets of the set Rn = {1, 2, . . . , n}. Its edges can be considered as
pairs of subsets whose intersections have cardinalities equal to s. Please make sure that you understand
it!

Recall that an independent set of vertices of a graph is a set, in which every two vertices are not joined
by an edge. The independence number α(G) of a graph G is the number of vertices in any maximal (by
cardinality) independent set. The chromatic number χ(G) of a graph G is the minimum number of colors
needed to color all the vertices of the graph in such a way that between any two vertices of the same color,
there are no edges.

Problem 10. Prove that for any n, r, s, one has χ(Rn) > χ(G(n, r, s)).

Solution. The graph G(n, r, s) can be embedded into Rn: first, we map every vector consisting of 0s and
1s to the corresponding point, then the distances between all points are equal to

√
2r − 2s, and second, we

make a homothety with coefficient 1√
2r−2s

, thus making all pairwise distances equal to 1. Hence, if we can

properly color the space into k colors, then we can also properly color the vertices of the graph G(n, r, s).

Problem 11. Prove that for every graph G = (V,E), one has χ(G) > |V |
α(G)

.

Solution. Every color should be an independent set, hence, its cardinality will not exceed α(G). Let
us increase the quantity of vertices of every color and make it equal to α(G), then the total number of
vertices will increase and become equal to χ(G) · α(G) > |V |. It implies the desired inequality.

Problem 12. Find α(G(n, 3, 1)). Derive from the obtained result a considerable improvement to the
bound in Problem 9.

Solution. The answer depends on the residue of n modulo 4. We will prove by induction that

n ≡ 0(mod 4)⇒ α(G(n, 3, 1)) = n,

n ≡ 1(mod 4)⇒ α(G(n, 3, 1)) = n− 1,

n ≡ 0(mod 4)⇒ α(G(n, 3, 1)) = n− 2,

n ≡ 0(mod 4)⇒ α(G(n, 3, 1)) = n− 2,
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Every vector consists of zeroes and ones. Fix any independent set. It follows from the condition that every
two distinct vectors in it either do not intersect, or intersect by 2 elements. First we give examples which
show that α(G(n, 3, 1) is at least the required number. For n = 4

(0, 1, 1, 1),

(1, 0, 1, 1),

(1, 1, 0, 1),

(1, 1, 1, 0).

(1)

For n divisible by 4 we split the coordinates into groups of 4 and in every group perform the same
construction as above.

For n ≡ 1(mod 4) we forget one coordinate and repeat the same construction as above.
For other values of n, we give another construction:

(1, 1, 1, 0, . . . , 0),

(1, 1, 0, 1, 0, . . . , 0),

(1, 1, 0, 0, 1, 0, . . . , 0),

. . . ,

(1, 1, 0, 0, . . . , 0, 1, 0),

(1, 1, 0, 0, . . . , 0, 0, 1),

(2)

Here two first coordinates are always equal to 1, hence, every two vectors intersect in exactly two coordi-
nates. This example contains n− 2 vectors.

Now we prove that it is the maximal possible value. Take two intersecting vectors, without loss of
generality they are

(1, 1, 1, 0, . . . , 1) and (1, 1, 0, 1, 0, . . . , 0).

Now take any other vector. Either it has a nonzero coordinate on the position 5–n, or it is as in (1). In
the first case the vector is of form (1, 1, 0, 0, . . . , 0, 1, 0, . . .), and the vectors of the second type are no more
possible, in the second case we have no more than 4 vectors which have nonzero coordinates on the first 4
positions, and we can apply the induction step. In the first case we have no more than n − 2 vectors, as
in (2). It is not more than in the answer, and we are done.

We get the following bound for the chromatic number:

χ(Rn) > χ(G(n, 3, 1)) >
C3
n

α(G(n, 3, 1))
>

(n− 1)(n− 2)

6
.

Problem 13∗. Find χ(G(n, 3, 1)) for n = 2k. Hint. Use Problems 11 and 12 as well as the following
lemma and induction by k.

Solution. The proof of this theorem can be found in [6].

Lemma 1. Let n be an even number and Pn be the set of all unordered pairs {a, b} of natural numbers
both of which do not exceed n. Then there exist such sets of pairs B1, . . . , Bn−1 that

Pn = B1 t . . . tBn−1.

Moreover, for any i = 1, . . . , n− 1, no two pairs from Bi contain a common element. For odd n, we have
a partition

Pn = B1 t . . . tBn,

and, again for any i = 1, . . . , n, no two pairs from Bi contain a common element.
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Problem 14∗∗. Find sharpest possible bounds (ideally — a formula) for χ(G(n, 3, 1)) for every n.

Solution. This problem has two stars, hence, if you have solved it, you could obtain a new result.

Problem 15. Prove that α(G(n, r, s)) > Cr−s−1
n−s−1.

Solution. Consider only those vertices which have ones at the first s + 1 positions. There are Cr−s−1
n−s−1

such vertices. The scalar product of any two of them is at least s+ 1, hence, no two of them are joined by
an edge.

Problem 16∗. Prove that α(G(n, r, 0)) = Cr−1
n−1, if 2r 6 n.

Solution. Let us denote by B any (fixed throughout the proof) subset in the set of vertices V (n, r),
which is independent in G(n, r, 0) and has cardinality α(G(n, r, 0)).

Lemma. For every s, 1 6 s 6 n, let us consider the set As = {s, s+ 1, . . . , s+ r − 1}, where the sum
is modulo n. Then B cannot contain more than r subsets of form As.

Proof. Fix any As from α(G(n, r, 0)). Take all the other sets Ak intersecting As and form r − 1 pairs
{As−i, As+r−i}. Now the statement of Lemma follows from the fact that B contains at most one element
from each pair.

Let us deduce the Problem statement from the Lemma. Take an arbitrary permutation σ of elements
{1, 2, . . . , n} and fix i ∈ {1, 2, . . . , n}. Let A = {σ(i), σ(i + 1), . . . , σ(i + r − 1)}, where the sum is taken
modulo n, as above. Since σ was an arbitrary permutation, it follows from Lemma that P (A ∈ B) 6 r

n
.

But A is taken equiprobably from all the r-element subsets. Hence,

r

n
> P (A ∈ B) =

|B|
Cr
n

and
|B| 6 r

n
Cr
n = Cr−1

n−1.

Problem 17. Prove that χ(G(n, r, 0)) 6 n− 2r + 2, if 2r 6 n.

Solution. Let us color all the vertices having 1st coordinate equal to one into the first color. Then let us
color all the yet uncolored vertices, which have second coordinate equal to 1, into the second color, and so
on till the (n−2r+1)th color. Clearly, there will be no edges between the vertices of one color. It remains
to color some vertices, and we have one more color. But what vertices are yet uncolored? Only those who
have only ones on the last 2r − 1 coordinates. Clearly, there are no edges between these vertices, hence,
we can color them all in the remaining color.

Problem 18. Prove that χ(G(n, r, s)) 6 Cs
rC

r−s
n−r + 1.

Solution. What is Cs
rC

r−s
n−r? It is the degree of every vertex of the graph G(n, r, s). It is easy to see

that if the degree of every vertex of the graph does not exceed d, then the graph can be properly colored
into d+ 1 colors. Indeed, let us color the vertices one by one. For every yet uncolored vertex, there exists
at least one color such that our vertex is not connected with vertices of this color. Hence, we can color it
in this color.
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Problem 19. Prove that χ(G(n, r, s)) 6 Cs+1
n .

Solution. Let us enumerate all the (s+ 1)-element subsets of Rn with numbers 1, . . ., Cs+1
n . Now let us

color all the vertices containing the first subset into the first color, all the yet uncolored vertices containing
the second subset into the second color, and so on. Finally, all the vertices will be colored, and there will
be no edges between the vertices of one color.

Problem 20∗. Let k =
[
r−1
s

]
. Prove that χ(G(n, r, s)) 6 k · Cs+1

dnke
.

Solution. The proof of this fact can be found in [6].

Problem 21∗. Prove that n− r+ 1 6 χ(G(n, r, r− 1)) 6 n for n = 2k. Hint. Use Lemma 1 (see above)
and induction by r and k.

Solution. To prove the lower bound, we show that the graph contains a clique of size n− r+ 1. Indeed,
let us take the vertices corresponding to the vectors having ones on the first r − 1 coordinates. There are
exactly n− r + 1 such vertices, and they are all mutually joined by edges.

Consider the particular case r = 2. Let us show that Lemma 1 implies the inequality χ(G(n, 2, 1)) 6 n.
Indeed, let us identify the vertices of G(n, 2, 1) with the set of pairs of integers 1, . . . , n, and two vertices
are joined by an edge if and only if the corresponding pairs have a common element. Hence, if we take
colors χi = Bi from Lemma 1, then the graph will be colored into n − 1 colors for n = 2m and into n
colors for n = 2m+ 1.

Now take arbitrary r and prove the upper bound by induction on r. Its base r = 2 is proved above.
Suppose that the upper bound is true for all r < k. Let us prove the step, for this we need to color the
graph G(n, k, k − 1).

Let n = 2l. To color the graph G(n, k, k−1), we use induction on l. The base will be for the maximal l0
such that 2l0 < k. For this l0 we have χ(G(2l0 , k, k − 1)) = 0, and the upper bound is satisfied. Now we
prove the induction step. We assume that χ(G(2l−1, k, k− 1)) 6 2l−1. Let us split the set of elements into
two parts:

A1 = {1, . . . , n/2},
A2 = {n/2 + 1, . . . , n}.

Split the vertices of our graph into k + 1 pairwise disjoint sets

Vj = {v ∈ V (G(n, k, k − 1)) : |v ∩ A1| = j}, j = 0, . . . , k.

We note that for l = l0 + 1 some Vjs are empty. It will only improve the bound, hence, below we assume
that all Vj are nonempty.

Consider the graph G(n/2, j, j − 1) for j = 1, . . . , k− 1. By the induction assumption, χ(G(n/2, j, j −
1)) 6 n/2, and all the j-element subsets of the set A1 can be colored into n/2 colors ϕ1, . . . , ϕn/2 in such
a way that every two such subsets of one color intersect by a number of elements not equal to j − 1.
Let us denote by W ν

j,1 the set of all such subsets which are colored with color ϕν . We also introduce the
graph G(n/2, k−j, k−j−1) constructed on the set of elements of A2. Then all the (k−j)-element subsets
of the set A2 can be colored with colors ψ1, . . . , ψn/2 in such a way that subsets, colored with one color,
intersect by a number of elements not equal to k−j−1. We denote by W µ

k−j,2 the set of all (k−j)-element
subsets of A2, colored with the color ψµ.
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For ν ∈ {1, . . . , n}, let U1,ν
j = {w1 t w2 : w1 ∈ W ν

j,1, w2 ∈ W ν
j,2}, and let U1

j =

n/2⊔
ν=1

U1,ν
j . It is clear that

every two sets from the collection U1
j intersect by a number of elements not equal to k− 1. Indeed, if this

is not true, then there exist vertices v, w ∈ U1
j such that |v ∩ w| = k − 1. Then either v ∩ A1 = w ∩ A1,

or v ∩ A2 = w ∩ A2, hence, the non-coinciding “halves” of these vertices are colored with the same
color. Without loss of generality, we assume that v ∩ A1 = w ∩ A1, then v ∩ A2 and w ∩ A2 have at
most k− j − 2 common elements. Hence, the vertices v and w cannot intersect by k− 1 elements, and we
get a contradiction. The case v ∩ A2 = w ∩ A2 can be treated analogously.

In the same way we can obtain the collection U2
j , taking the unions of sets from W 1

j,1 with sets

from W 2
k−j,2, of sets from W 2

j,1 with sets from W 3
k−j,2, . . . , of sets from W

n/2
1,j with sets from W 1

k−j,2.

Analogously, taking cyclical shifts, we define U3
j , . . . , U

n/2
j . Here j = 1, . . . , k − 1. By the assumption of

the induction on n, there exist collections U i
0 U i

k, which contain subsets of A2 and A1, respectively, and
intersecting by a number of elements not equal to k − 1 for every i = 1, . . . , n/2.

Now we finally define the color χi for i = 1, . . . , n/2 as the union of collections with even indices:

χi = U i
0 ∪ U i

2 ∪ U i
4 ∪ . . .

For i = n/2 + 1, . . . , n we take the union of collections with odd indices:

χi = U
i−n/2
1 ∪ U i−n/2

3 ∪ U i−n/2
5 . . .

Clearly, we colored our graph with not more than n colors, which ends the induction on the parameter n,
and, hence, it end also the induction on r. The upper bound is proved.

Problem 22∗∗. Find χ(G(n, r, r − 1)) or at least refine the bounds from Problem 21.

Solution. This problem has two stars, hence, if you have solved it, you could obtain a new result.

Please find out that none of the results that you have obtained allows you to improve the lower bounds
of the value χ(Rn) found in Problems 9 and 12. In view of Problem 11, it will be good to study upper
bounds for the independence numbers of the graphs G(n, r, s). It turns out that many of such bounds can
be obtained with the help of the linear algebra method. Thus, in the next section, we will recall some
basic notions of linear algebra.

2.3 Basics of linear algebra and its applications

We say that vectors x1, . . . ,xt in Rn are linearly independent, if the equality c1x1 + . . . + ctxt = 0 is
possible only in the case when c1 = . . . = ct = 0.

Problem 23. Prove that the maximum number of linearly independent vectors in Rn equals n.

Solution. The basis vectors ei = (0, 0, . . . , 0, 1, 0, . . . , 0), where one is at the ith position, i = 1, 2, . . . , n,
are linearly independent, since c1e1 + c2e2 + . . .+ cnen = (c1, c2, . . . , cn). Now we prove by induction on n
that every n+ 1 vectors in Rn are linearly dependent.

Base n = 1 is obvious.
Step from n to n + 1. If the (n + 1)th coordinate of all the n + 2 vectors is zero, then we can forget

it, and, using the induction assumption, find a nontrivial linear combination of the given n + 2 vectors
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such that the resulting vector is zero. It will remain zero when we add back the last coordinate. Let ak be
the (n + 1)th coordinate of the vector xk. Now, if the (n + 1)th coordinate of some vector xi is nonzero,
then replace our set of vectors with x′1,x

′
2, . . . ,x

′
n+1,x

′
n+2, where x′j = xj − (aj/ai)xi, x′i = 0. Then by the

induction assumption for the vectors x′1, . . . ,x
′
i−1,x

′
i+1, . . . ,x

′
n+2, we can find coefficients c1, . . . , cn+1 not

all vanishing such that

0 = c1x
′
1 + . . . , ci−1x

′
i−1 + cix

′
i+1 + . . .+ cn+1x

′
n+2 = c1(x1− (a1/ai)xi) + . . .+ cn+1(xn+2− (an+2/ai)xi) =

= c1x1 + . . .+ci−1xi−1 +(−c1(a1/ai)−c2(a2/ai)− . . .−ci−1(ai−1/ai)−ci(ai+1/ai)− . . .−cn+1(an+2/ai))xi+

+ cixi+1 + . . .+ cn+1xn+2.

Hence, we presented a nontrivial linear combination of the initial vectors resulting into a zero vector. We
get a contradiction.

Problem 24. Prove that if x1, . . . ,xn form an arbitrary system of linearly independent vectors in Rn,
then any vector x ∈ Rn can be represented as x = c1x1 + . . . + cnxn, where c1, . . . , cn are real numbers.
(The system x1, . . . ,xn is called a basis of the space and the expression c1x1 + . . . + cnxn is called linear
combination of the vectors x1, . . . ,xn with coefficients c1, . . . , cn. In these terms, any vector x ∈ Rn can
be represented as a linear combination of the vectors of the basis.)

Solution. On the contrary, suppose that there exists a vector x which cannot be represented as a linear
combination of vectors x1, . . . ,xn. Then the system of vectors {x1, . . . ,xn,x} will be linearly independent:
indeed, let c1x1 + . . . + cnxn + cx = 0, then either c = 0 and all ci vanish since xi, i = 1, 2, . . . , n, are
linearly independent, or c 6= 0, but then x = (c1/c)x1 + . . . (cn/c)xn, which contradicts our assumption.
But the set {x1, . . . ,xn,x} contains n+ 1 vectors, and we get a contradiction with the previous problem.

Let p be a prime number. Let Zp be the set of congruences modulo p. The space Znp , similarly to Rn,
is just the set of all the sequences of numbers from Zp. The operations of the sum of “vectors” x,y ∈ Znp
and of their product with elements of Zp is done, as usual, coordinate by coordinate, but, this time, every
coordinate is taken modulo p.

The notions of linear independence and of a basis for Znp are defined in the same way as for Rn.
However, here all the numbers ci are elements of Zp — not R, — and the equality to zero is understood
as the equality to zero modulo p.

Problem 25. Prove that the maximum number of linearly independent vectors in Znp equals n and that
any maximal system forms a basis.

Solution. The proof is the same as the proof of two previous problems. Indeed, every element can be
seen as a sequence of residues modulo p, the coefficients are not real numbers but residues modulo p, and
the only difference is that by 1/a we now mean the inverse element modulo p.

Problem 26. Let W = {x1, . . . ,xt} be an arbitrary independent set of vertices of the graph G(n, 3, 1).
Prove that the vectors x1, . . . ,xt are linearly independent in Zn2 and thus α(G(n, 3, 1)) 6 n, which is only
by an “epsilon” weaker than the result of Problem 12!
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Solution. On the contrary, suppose that there exist coefficients c1, . . . , ct ∈ Z2, not all vanishing, such
that

c1x1 + . . .+ cnxn = 0.

Without loss of generality we may assume that c1 6= 0. Let us take the scalar product of the both
hands of this equality by x1. Note that if we take the scalar product of two vectors, each has three nonzero
coordinates equal to 1, then it equals 3, if the vectors are equal, and 0, 1, or 2 in the other cases. Since
we take vectors from an independent subset of the graph G(n, 3, 1), the scalar product cannot equal 1. If
we take the obtained equality modulo two, then the first summand of the left hand side will be equal to 1
(since 3 ≡ 1(mod 2)), and all the others will be equal to 0, but on the right hand side we have 0. We get
a contradiction.

Let F ∈ {R,Zp}. Let x1, . . . , xn be “variables”. By a monomial depending on these n variables we
mean an expression of the form xa11 · . . . ·xann , where a1, . . . , an are some non-negative integers. A polynomial
is an arbitrary linear combination of monomials. More precisely, a polynomial P belongs to F [x1, . . . , xn],
if its coefficients are from F . Polynomials are added and multiplied according to the usual rules. Also if
P ∈ F [x1, . . . , xn], then it can be multiplied by any element of F . In any case, the rules of summation and
multiplication of the coefficients of polynomials are defined by the rules of summation and multiplication in
the set F . The degree of a monomial is the sum of the degrees of its variables. The degree of a polynomial
is the maximum of the degrees of its monomials. A polynomial P ∈ F [x1, . . . , xn] equals zero, if all its
coefficients are equal to zero in F . Polynomials P1 ∈ F [x1, . . . , xn], . . . , Pt ∈ F [x1, . . . , xn] are linearly
independent over F , if c1P1 + . . . + ctPt = 0 only in the case when all the numbers c1 ∈ F, . . . , ct ∈ F are
equal to zero in F . It is obvious that any polynomial is generated by the basis consisting of its monomials.

Problem 27. Prove that if some polynomials are linearly independent over their F , then their number
does not exceed the number of monomials in a basis, which generates all these polynomials.

Solution. Every polynomial is a linear combination of basis monomials, and suppose that there exist n
basis monomials. Then every polynomial corresponds to a unique sequence of n coefficients from F . In
other words, any polynomial can be viewed as a vector in F n. Then by Problems 24 and 25, the maximal
possible number of linearly independent vectors in this space is n, which gives the required bound.

Problem 28. Let W = {x1, . . . ,xt} be an arbitrary independent set of vertices of the graph G(n, 5, 2).
Let polynomials P1 ∈ Z3[y1, . . . , yn], P2 ∈ Z3[y1, . . . , yn], . . . , Pt ∈ Z3[y1, . . . , yn] be given by formulae

Pi(y) = Pi(y1, . . . , yn) = (xi,y)((xi,y)− 1), i = 1, . . . , t.

For example, if x1 = (1, 1, 1, 1, 1, 0, . . . , 0), x2 = (0, . . . , 0, 1, 1, 1, 1, 1), then

P1(y1, . . . , yn) = (y1+y2+y3+y4+y5)(y1+y2+y3+y4+y5−1) = y2
1+. . .+y2

5+2y1y2+. . .+2y4y5−y1−. . .−y5,

P2(y1, . . . , yn) = (yn−4 + yn−3 + yn−2 + yn−1 + yn)(yn−4 + yn−3 + yn−2 + yn−1 + yn − 1) =

= y2
n−4 + . . .+ y2

n + 2yn−4yn−3 + . . .+ 2yn−1yn − yn−4 − . . .− yn.

Prove that the polynomials P1, . . . , Pt are linearly independent over Z3 and therefore α(G(n, 5, 2)) 6
C2
n + 2C1

n.
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Solution. As we did in Problem 26, assume the contrary: suppose that there exists a linear dependency,
which has a nonzero coefficient at some Pi. Let us substitute y by xi. Then the right hand side will remain
zero, and all Pj, j 6= i, will vanish in the left hand side. Indeed, the scalar product (xi,y) can equal 0,
1, 3, or 4, and then the polynomial vanishes modulo 3. The scalar product cannot be equal to two since
we started from an independent subset of G(n, 5, 2). It can equal 5 in the only case when two vectors
coincides, which gives us the only nonzero summand, and we get a contradiction.

Now let us count the number of possible monomials. We have products of form yiyj, squares y2
i , and

linear terms yi. This gives us C2
n + 2C1

n monomials, which implies the required bound for α(G(n, 5, 2)).

Problem 29. Assume that in the conditions of the previous problem the polynomials Pi are substituted
by P ′i according to the following rule: every monomial of the form y2

i is changed by yi, and after that
monomials of the same form are added. Prove that the polynomials P ′1, . . . , P

′
t corresponding to the

vectors from an independent set of vertices W of the graph G(n, 5, 2) are also linearly independent over
Z3, similarly to the initial polynomials P1, . . . , Pt. Derive from this fact the bound α(G(n, 5, 2)) 6 C2

n and
compare it with the bound from the problem 15.

Solution. Note that in the previous solution, when we used linear dependencies, we used only the values
of the polynomials at the points having coordinates equal either to 0 or to 1. Clearly, the values of the
new polynomials will coincide with the values of the old polynomials in these points, hence, the same proof
can be applied.

Now note that, if we open the brackets and perform the required substitutions, every polynomial will
contain only pairwise products of variables, hence, the basis of the corresponding space contains at most
C2
n monomials, which gives the required bound.

Now let us compare the bound with the bound of Problem 15. We get that α(G(n, 5, 2)) ∼ 1
2
n2.

Problem 30. Derive from the result of the previous problem a lower bound for χ(Rn), which considerably
improves the bound from Problem 12. Ensure yourselves, however, that, in view of Problem 19, substantial
further advances based on the graph G(n, 5, 2) cannot be done.

Solution. Let us apply the homothety with the coefficient 1/
√

6 to the graph G(n, 5, 2) and then apply
Problem 11. We obtain that

χ(Rn) >
|V |

α(G(n, 5, 2))
> C5

n/C
2
n = 60n3 +O(n2).

On the other hand, using this graph, we cannot bound the chromatic number of order greater than C3
n.

Problem 31. Let W = {x1, . . . ,xt} be an arbitrary independent set of vertices of the graph G(n, 9, 4).
Let polynomials P1 ∈ Z5[y1, . . . , yn], P2 ∈ Z5[y1, . . . , yn], . . . , Pt ∈ Z5[y1, . . . , yn] be given by the formulae

Pi(y) = Pi(y1, . . . , yn) = (xi,y)((xi,y)− 1)((xi,y)− 2)((xi,y)− 3), i = 1, . . . , t.

Prove that the polynomials P1, . . . , Pt are linearly independent over Z5.

Solution. As we did in Problem 28, we take a nontrivial linear combination resulting into zero vector.
Then we find a nonzero term in this linear combination, substitute the corresponding vector xi instead
of y into the whole linear combination and obtain that on one hand we have identically zero, while on the
other hand we have exactly one nonzero term corresponding to xi. We get a contradiction.
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Problem 32. Which upper bound for α(G(n, 9, 4)) follows from the previous problem?

Solution. We need to count the number of monomials necessary to generate all the vectors P1, P2, . . . , Pt.
It suffices to take all the monomials of the form

yiyjykyl, y
2
i yjyk, yiyjyk, y

3
i yj, y

2
i y

2
j , y

2
i yj, yiyj, y

4
i , y

3
i , y

2
i , yi, const.

The number of such monomials equals C4
n + 4C3

n + 6C2
n + 4C1

n + 1, hence, α(G(n, 9, 4)) is bounded by the
same value.

Problem 33. Let in the conditions of Problem 31 the polynomials Pi be replaced by some P ′i according
to the following rule: in them, every monomial, which appears after opening the brackets and summing
similar monomials, has of course the form ya11 · . . . · yann ; if among the numbers ai, one has some numbers
greater than or equal to 2, then we replace all of them by 1s and sum up similar monomials. For example,
the monomial y2

1y
2
2 is transformed to y1y2 and the same is true for the monomials y2

1y2, y1y2, etc. Prove
that the polynomials P ′1, . . . , P

′
t corresponding to the vectors from an independent set W of the graph

G(n, 9, 4) are also linearly independent over Z5, just as it was with the initial polynomials P1, . . . , Pt.
Derive from this fact the bound α(G(n, 9, 4)) 6 C4

n + C3
n + C2

n + C1
n + C0

n and compare it with the bound
from Problem 15.

Solution. To prove linear independency in Problem 31, we substituted 0 and 1 instead of yi into some
inequalities. In the both cases, the value of the polynomial will not change during this operation. Hence,
the proof remains valid, and we get a new estimate on the number of such polynomials: it is bounded by
the number of generating monomials, which is equal to C4

n + C3
n + C2

n + C1
n + C0

n. Asymptotically this
coincides with the bound from Problem 15.

Problem 34. Derive from the result of the previous problem a lower bound for χ(Rn), which considerably
refines the bound from Problem 30. Ensure yourselves, however, that, in view of Problem 19, substantial
further advances based on the graph G(n, 9, 4) cannot be done.

Solution. In the same way as we did in Problem 30, we get χ(Rn) > C9
n/C

4
n = 4!

9!
n5 + O(n4). On the

other hand, if we apply Problem 19, we get a bound not better than C5
n, which asymptotically gives the

same order of magnitude.

Problem 35. Let r and s be such that r − s = p, where p is a prime number and r − 2p < 0. Prove

that α(G(n, r, s)) 6
p−1∑
k=0

Ck
n. Compare this bound with the bound from Problem 15.

Solution. Fix any independent subset W = {x1, . . . ,xn} and consider polynomials Pi ∈ Zp[y1, . . . , yn]
given by formulae

Pi(y) = (xi,y)((xi,y)− 1) . . . ((xi,y)− (p− 1)).

As we did above, we prove that they are linearly independent and that their number is bounded from
above by the required value. On the other hand, in Problem 15 the same value was bounded from below,
which gives asymptotically the same order of magnitude: α(G(n, r, s)) ∼ 1

(p−1)!
np−1.

12



Problem 36∗. Explore lower bounds for the quantity χ(Rn), which follow from the results of the previous
problem. How do these bounds correlate with the bounds from Problem 19?

Solution. We use the same notation as in the previous problem. We have

χ(Rn) > χ(G(n, r, s)) >
|V (n, r)|

α(G(n, r, s))
>

Cr
n

p−1∑
k=0

Ck
n

= (1 + o(1))(
Cr
n

Cr−s−1
n

),

i.e., there exists a constant c1 such that χ(G(n, r, s)) > c1n
s+1, but, on the other hand, we know by

Problem 19 that χ(G(n, r, s)) 6 c2n
s+1 for some other constant c2. This means that we know the order of

growth of the chromatic number for the graphs G(n, r, s) with r − s = p, p prime, r − 2p < 0.

3 Problems after the intermediate finish

Before the intermediate finish we have seen how important are the independence numbers of graphs for
obtaining lower bounds on the chromatic number of a space. Moreover, we considered different sequences
of distance graphs — the sequences {G(n, r, s)}∞n=1 with given r and s. It is interesting to understand
how will be changed the independence numbers, if, instead of the graphs G(n, r, s), we take their spanning
subgraphs, i.e., if we take the same sets of vertices and partially remove the edges. It seems to be
evident that the independence numbers must become substantially larger, provided we remove many
edges. However, surprisingly, sometimes this is true, but sometimes this is completely wrong! In order to
obtain the corresponding results, let us learn some random graphs and some probability theory.

3.1 The random Erdős–Rényi graph and some of its probabilistic character-
istics

Let Vn = {1, . . . , n} be a set of vertices. In principle, one can construct on this set C2
n edges, if we do not

allow multiple edges, loops and orientation. Let us each of these C2
n potential edges draw with probability

p ∈ [0, 1], which is the same for every edge. Different edges appear independently. Let G = (Vn, E) be a
graph which can appear as a result of the just-described probabilistic procedure. Denote the probability
of its appearance by P(G). Clearly it is equal to p|E|(1− p)C2

n−|E|. If A is a property of a graph, then its
probability — P(A) — is the sum over all the graphs G, which have property A, of the probabilities of
these graphs.

Denote by Ωn the set of all graphs on the vertices Vn. Any function X defined on Ωn and taking
real values is called random variable. For example, the number of triangles in a graph or its number of
connected components, or its independence number are random variables. Here you must understand that
the variables are random only due to the fact that apriori we do not know which graph will (randomly)
come to us. When a graph is already born the value of X is determined uniquely!

Any random variable has some “mean value” — the so-called (mathematical) expectation. The expec-
tation of a variable X is the number MX defined by the formula MX =

∑
G∈Ωn

X(G)P(G). We just sum up

the values of the function X on all the graphs multiplied by the probabilities of these graphs. Of course
this is some weighted average (weights are probabilities) — a kind of the mass centre). Let us learn to
calculate expectations and apply the obtained results to the study of the properties of random graphs.

Problem 37. Prove that if a random variable is just a constant c, then Mc = c.
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Solution. What is the average value of the constant? Obviously, it is constant itself.

Problem 38. Let X1, X2 be random variables and c1, c2 be some fixed numbers. Certainly c1X1 + c2X2

is also a random variable. Prove that its expectation equals c1MX1 + c2MX2. This property is called
linearity of expectation.

Solution.

M(c1X1 + c2X2) =
∑
G

(c1X1(G)P (G) + c2X2(G)P (G)) = c1

∑
G

X1(G)P (G) + c2

∑
G

X2(G)P (G) =

= c1MX1 + c2MX2.

Problem 39. Using linearity of expectation find expectations of a) the number of triangles in the random
graph; b) the number of connected components of the random graph, each of which is a cycle on k vertices
(k is a fixed given number); c) the number of independent sets in the random graph, each of which has
cardinality k (k is a fixed given number).

Solution. a) There are C3
n choices of three vertices, and each of them will give a triangle with prob-

ability p3. From linearity of expectation, it follows that MX = C3
np

3, where X is the required random
variable.

b) There are Ck
n choices of k vertices in the given graph, and each of them can form (k − 1)!/2 cycles

(here we count the order of the vertices in the cycle). The probability of such an ordered set to become
a connected component being a cycle equals pk(1− p)(C2

k−k)+k(n−k), since there should be exactly k edges
between the vertices of this cycle and since there should be no edges between this subgraph and the other
vertices of the graph. It follows from linearity that

MX = Ck
n(k − 1)!pk(1− p)(C2

k−k)+k(n−k),

where X is the required random variable.

c) There are Ck
n choices of k vertices, and each of them is independent with probability (1 − p)C

2
k .

Hence, MX = Ck
n(1− p)C2

k , where X is the required random variable.

Problem 40. Prove Markov’s inequality: if X is a random variable taking non-negative values and a is
a positive number, then P(X > a) 6 MX

a
.

Solution.

MX =
∑
z

zP (X = z) =
∑
z>a

zP (X = z) +
∑
z<a

zP (X = z) >
∑
z>a

aP (X = z) = aP (x > a).

This is equivalent to Markov’s inequality.

Problem 41. Using Markov’s inequality prove that if p = 1
2
, then P(α(G) 6 2 log2 n)→ 1 as n→∞ (it

is used to say that “almost surely α(G) 6 2 log2 n”).
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Solution. Introduce the random variable Xk which is equal to the number of independent sets of vertices
of size k. Then from problems 39 and 40 can be seen that

P (Xk > 1) 6 MXk = Ck
n

(
1

2

) k(k−1)
2

6
nk

k!

(
1

2

) k(k−1)
2

6
nkek

kk

(
1

2

) k(k−1)
2

=

(
ne2

k−1
2

k

)k

.
It is easy to see that for k = 2 log2 n this value tends to 0. So, with probability tending to 1, an

independent set of vertices of size k in the graph does not exist.

Note that actually for p = 1
2

almost surely α(G) > (2 − ε) log2 n for any given arbirarily small ε > 0.
More precisely, — and we shall use it later, — the following theorem holds.

Theorem 1. For any ε > 0 and large enough n the inequality

P(α(G) > (2− ε) log2 n) > 1− 2−n

holds.

Thus, for p = 1
2
, almost surely the independence number is approximately 2 log2 n. In other words,

what’s happening? We take the complete graph on n vertices and we delete some of its edges, each

with probability 1
2
. A typical graph, which appears as a result of this procedure, has about C2

n

2
edges —

two times less than the complete graph has. And the independence number of a typical graph is in a
logarithm times greater than the independence number of the initial graph (the independence number of
the complete graph is of course 1). OK, the number of edges is two times smaller and the independence
number increases: quite natural. It turns out that for some G(n, r, s) when deleting their edges randomly,
we get the same “expected” result (the independence number becomes approximately log times bigger).
But the miracle is that this happens not everytime! For many G(n, r, s) the independence number does
not change at all! Below, we will study together examples of both situations.

3.2 Random subgraphs of the graph G(n, 3, 0)

Let G1/2(n, 3, 0) be a random subgraph of the graph G(n, 3, 0) obtained by deleting mutually indepen-
dently some edges of the graph G(n, 3, 0), each with probability 1/2.

Problem 42. If you solved Problem 16, then just derive from it that α(G(n, 3, 0)) = C2
n−1. Otherwise,

try to solve this particular case of that problem.

Solution. See the solution of Problem 16.

In a series of problems below, we will prove that almost surely α(G1/2(n, 3, 0)) 6 C2
n−1

(
1 + 1

lnn

)
. This

is exactly what we mentioned above speaking about a surprising phenomenon: there is no growth in log
times; if there is some growth, then it is only in such a number of times that itself tends to 1 as n→∞!
One can prove even stronger facts, but this is very difficult, and we do not want to do it here: we just
want to see the essence!

In what follows, we will for conciseness omit integer parts around quantities which must be integer. For
example, writing Ck

log2 n
means, depending on context, that actually we take an upper or a lower integer

part of the number log2 n. None of the computations will become false after this roughening.
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Problem 43. Put k = C2
n−1

(
1 + 1

lnn

)
. Assume that k is integer (cf. a remark before the problem). Let

A ⊂ V (n, 3) be an arbitrary set of vertices of the graph G(n, 3, 0) having cardinality k. Denote by r(A)
the number of edges of the graph G(n, 3, 0), whose both ends are in A. Since |A| = k > α(G(n, 3, 0)), it
is clear that r(A) > 0. Let Xk be the random variable equal to the number of independent sets of size k
in a graph G1/2(n, 3, 0). Prove that

MXk =
∑

A⊂V (n,3): |A|=k

(
1

2

)r(A)

. (2)

Solution. Let t = Ck
|V |. Let each subgraph on k vertices correspond to the random variable equal to 1

if the corresponding subgraph on k vertices became independent, and 0 otherwise. Let these random
variables be Y1, Y2, . . . , Yt. Then Xk = Y1 + Y2 + · · · + Yt. But the expectation of Yi is obviously equal

to 1
2

|Yi|, where |Yi| is the number of edges in corresponding to the i-th random variable subgraph. It
immediately follows from the linearity of the expectation that

MXk =
∑

A⊂V (n,3): |A|=k

(
1

2

)r(A)

.

Problem 44. Prove that our aim will be attained, if we will prove that MXk → 0 as n→∞.

Solution. We want to prove that with high probability there are no independent sets of size k, i.e,
P (Xk = 0) → 1 as n → ∞. But it is clear that P (Xk = 0) + P (Xk > 1) = 1. Then we need to prove
that P (Xk > 1)→ 0. But Markov’s inequality implies that P (Xk > 1) 6 MXk. It remains to show that
MXk → 0 as n→∞.

Clearly we have to learn bounding from below the quantity r(A). For each A, denote by B = B(A) any
(chosen for everytime) subset of A, which is independent in G(n, 3, 0) and has the maximum cardinality
among all analogous subsets of the set A.

Problem 45. Let A ⊂ V (n, 3), |A| = k. Let B = B(A). Note that k ≈ n2

2
. Assume that |B| is

substantially smaller than k: for example, let |B| < n1.9 (here the strange number 1.9 is taken almost
arbitrarily; important is that it is strictly smaller than 2). Prove that for large enough n the inequality
r(A) > k2

3|B| holds (being more careful one can replace 3 in the denominator by “almost” 2, but this does

not matter).

Solution. First, let us prove the following lemma:

Lemma. Any subgraph G̃ of graph G, with mn vertices, and with α(G) 6 n, contains not less than
m2n

2
− mn

2
edges (m ∈ N).

Proof.
Let us prove this by induction on m.
Base. m = 1.
m2n

2
− mn

2
= 0. It is obvious.

The induction step. m→ m+ 1.
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Consider a maximal independent set in the subgraph G̃. If there is more than one such set, consider any
of them. It is obvious that the independence number of the subgraph does not exceed the independence
number of the initial graph. Therefore, α(G̃) ≤ n. So, there is at least 1 edge from each of the remaining
(m + 1)nk vertices to this set, otherwise we could increase the independent set, but by the assumption
it is maximum. So, we have not less than (m + 1)n − k edges. And no one from this edges is lying in
the subgraph on remaining (m + 1)n − k vertices. But (m + 1)n − k ≥ mn, and so in the subgraph on
remaining (m + 1)n − k vertices there are not less than m2n

2
− mn

2
edges (by the induction hypothesis).

Then, there are not less then

m2n

2
−mn

2
+(m+1)n−k ≥ m2n

2
−mn

2
+mn =

m2n+ 2mn+ n

2
− n

2
−mn

2
=

(m+ 1)2n

2
− (m+ 1)n

2

edges. The induction step is proved.
So it follows from lemma that

r(A) >

[
|A|
|B|

]2

|B|

2
−

[
|A|
|B|

]
|B|

2
=

[
|A|
|B|

]
|B|

2

([
|A|
|B|

]
− 1

)
>
k − |B|

2
(
k

|B|
− 2) = (1 + o(1))

k2

2|B|
.

Problem 46. Let A ⊂ V (n, 3), |A| = k. Let B = B(A). Let |B| > 9n or, even better (in addition to
the previous problem), |B| > n1.9. Prove that r(A) > (|B| − 9n)(|A| − |B|).

Solution. Let us estimate the number of edges of the graph G(n, 3, 0) in A. Recall that B is the
maximum independent set of vertices of graph G(n, 3, 0) in A. Because of this, for any vertex x ∈ A \ B
there is a vertex y ∈ B such that {x,y} ∈ E(n, 3, 0). Let us show that the vertex y is not unique with
this property. Indeed, the vertices x and y are connected by an edge, and so they do not intersect as
3-element sets. Let us estimate how many vertices z ∈ B which aren’t connected with x can exist. On
the one hand, they must intersect with x by at least one element. On the other hand, they must intersect
with y too, cause B is an independent set. But x and y haven’t any intersection. So, there are not more
than 32n3−2 such vertices z in the current situation |B| > n3−1.1.. Consequently, the number of vertices of
B, which is connected to the given vertex x ∈ A \B, is not less than |B| − 9n. Thus,

|{{x,y} ∈ E(n, 3, 0) : x,y ∈ A}| > (|A| − |B|)(|B| − 9n) >
C2
n−1

lnn
n1.9 = (1 + o(1))

n3.9

2 lnn
,

(last transitions are possible, provided that |B| > n1.9. But for inequality r(A) > (|B| − 9n)(|A| − |B|) it
suffices that |B| > 9n).

Problem 47. Decompose sum (2) into two parts: in the first part, only those A will be taken, for which
|B| < n1.9; in the second part, all the other sets A will be considered. To the summands in both parts
apply the bounds from the corresponding problems and make it sure that the whole sum (2) does really
tend to zero, which means that we are done!

How can we change the threshold n1.9 in order to still get the same result?

Solution. It is sufficient to verify that in the random graph G(G(n, 3, 0), 1/2) there is an independent
set of vertices of size k with probability tending to zero. It is known that this probability is not greater
than ∑

A⊂V (n,r),|A|=k

P(A is independent in G(G(n, 3, 0), 1/2)) =
∑

A⊂V (n,r),|A|=k

2−|{{x,y}∈E(n,3,0): x,y∈A}|.
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Let us show that the last sum tends to zero too.
There are two options: either for the A holds |B| 6 n1.9 = o

(
C2
n−1

)
( A is set of the first type), or for

the A holds |B| > n1.9 (A is set of the second type).
Let us select terms corresponding to the sets A of the first type in the sum above. This sum does not

exceed

Ck
C3

n
2−(1+o(1)) k2

2n1.9 < 3kn3k2−(1+o(1)) k2

2n1.9 = 3k2(1+o(1))3n2

2
log2 n2

−(1+o(1)) n4

2(2)2n1.9 → 0.

Here we use the fact that r is constant and

n2 log2 n = o
(
n2.1
)
.

Now let A be a set of the second type. Using Problem 45,

|{{x,y} ∈ E(n, 3, 0) : x,y ∈ A}| > n3.9

2 lnn
,

So, the sum of terms corresponding to the sets A of the second type (in the sum above) does not exceed

Ck
C3

n
2−(1+o(1)) n3.9

2 lnn < 3kn3k2−(1+o(1)) n3.9

2 lnn = 3k2(1+o(1))3n2

2
log2 n2−(1+o(1)) n3.9

2 lnn → 0.

The result follows.

3.3 Random subgraphs of the graph G(n, 3, 1)

Let G1/2(n, 3, 1) be a random subgraph of the graph G(n, 3, 1) obtained by deleting mutually indepen-
dently some edges of the graph G(n, 3, 1), each with probability 1/2. It seems that everything is the same
as with the graphs G(n, 3, 0). This is completely wrong!

Recall that α(G(n, 3, 1)) ≈ n (see Problem 12).

Problem 48∗. Write down an analog of inequality (2) and prove an analog of the bound from Problem 45.
Ensure yourselves eventually that there exists a c > 0, with which almost asurely α(G1/2(n, 3, 1)) 6
cn log2 n.

Solution. We explained in detail how to prove the bound in Problem 45, so we will not re-do it. We
assume that the quantity of edges in the set A of cardinality k is not less than (1 + o(1)) k

2

2n
. If somebody

does not believe this, he should repeat inference from Problem 45 by himself.
Let Xk = Xk(G(G(n, 3, 1), 1/2)) be a function of random graph which is equal to quantity of indepen-

dent sets with k vertices in the graph (i. e., of sets such that their elements are not mutually connected
by edges). Let us estimate its expectation and use Markov’s inequality:

EXk =
∑

A⊂V (n,3), |A|=k

P(A is an independent set in G(G(n, 3, 1), 1/2)) =

=
∑

A⊂V (n,3), |A|=k

2−|{{x,y}∈E(n,3,1):x,y∈A}|,

so in exponential factor there is a quantity of edges of subgraph of graph G(n, 3, 1), which is induced by
the concrete set of vertices A. As we remember

|{{x,y} ∈ E(n, 3, 1) : x,y ∈ A}| > (1 + o(1))
k2

2α(G(n, 3, 1))
= (1 + o(1))

k2

2n
.

18



So, cause of this bound, we obtain that

EXk <
∑

A⊂V (n,3), |A|=k

2−(1+o(1)) k2

2n = Ck
C3

n
2−(1+o(1)) k2

2n .

It is well known that Cb
a 6

(
ea
b

)b
, where e is a base of the natural logarithm. So,

EXk <

(
n3

k

)k
2−(1+o(1)) k2

2n = 23k log2 n−k log2 k−(1+o(1)) k2

2n .

I.e., there exists a function k = k(n), which is asymptotically equal to 4n log2 n and such that for this
subsequence, EXk → 0 where n→∞. The theorem follows from this statement and Markov’s inequality:

P(α(G(G(n, 3, 1), 1/2)) 6 4(1 + o(1))n log2 n) = P(Xk = 0) > 1− EXk → 1, n→∞.

QED.

Problem 49. Prove that in the graph G(n, 3, 1), there exist approximately n
2

complete subgraphs, each
having about n

4
vertices, such that every two of them are not connected by an edge.

Solution. For convenience let us assume that n is divisible by 4. Let m = n
2
. We divide Rn into parts

R1 = Rm and R2 = Rn \ R1. First, we describe the construction of one clique (independent subset) Q1.
For this, we take disjoint pairs {1, 2}, {3, 4}, {5, 6}, . . . , {m − 1,m} (cause of m is even) in R1. We add
element m + 1 ∈ R2 to each of these pairs. This is the desired clique. It contains m

2
= n

4
vertices. We

similarly construct n−m− 1 cliques Q2, . . . , Qn−m by adding to all the pairs in R1 element m+ 2 ∈ R2,
element m+ 3 ∈ R2, etc. Obviously, there are no edges between x,y for any i, j, i 6= j, x from Qi, y from
Qj: these triples either do not intersect at all or intersect by some pair of R1.

Hence, we have constructed n
2

cliques, each containing n
4

elements.

Problem 50. With the help of the previous problem and Theorem 1 prove that for every ε > 0, almost
surely α(G1/2(n, 3, 1)) > (1− ε)n log2 n.

Solution. As we know, a random graph G(G(n, 3, 1), 1/2) is obtained from the graph G(n, 3, 1) as a
result of mutually independent choice of edges from E(n, 3, 1) with the same probability 1

2
. Therefore,

there are independent copies of a random graph of Erdős–Rényi G(m/2, 1/2) on cliques Q1, . . . , Qn−m.
Let us note that these copies are independent from the point of view of probability theory (as random
elements), and from the point of view of the theory of graphs (there are no edges between them).

When p = 1
2
, Theorem 1 says that with the asymptotic probability 1, we have α(G(m/2, 1/2)) ∼

2 log2m when m→∞, but m is only by a constant factor less than n, so α(G(m/2, 1/2)) ∼ 2 log2 n when
n→∞. Moreover, the rate of tending of probability to one is very high. For an appropriate choice of the
infinitesimal parameter and large n, we get the estimate

P(α(G(m/2, 1/2)) > 2(1 + o(1)) log2 n) > 1− 2−n.

This means that

P(∀ i = 1, . . . , n−m α(G(Qi, 1/2)) > 2(1 + o(1)) log2 n) >
(
1− 2−n

)n−m → 1, n→∞.
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Therefore, with the asymptotic probability 1 there are n −m independent sets of size 2(1 + o(1)) log2 n
in a random graph G(G(n, 3, 1), 1/2), and there are no edges between them. Together they make up one
independent set of size 2(n−m)(1 + o(1)) log2 n ∼ n log2 n, QED.

Thus, for G1/2(n, 3, 1), just as it was for the Erdős–Rényi random graph, we again have the growth of
the independence number in approximately logarithm of the number of vertices times!

Problem 51∗. Try to improve into a constant number of times the bound in the problem 50.

Solution. To improve the bound, it suffices to repeat the proofs of Problems 49 and 50, replacing m = n
2

by m = 2
[

n
2 log2 n

]
, here [x] is the usual integer part of x. Then we obtain an estimate of exactly two times

better than in Problem 50.

3.4 Random subgraphs of the graph G(n, 2, 1)

Problem 52. Find α(G(n, 2, 1)).

Solution. Obviously, this is just a cover of our set by disjoint pairs. Hence, α(G(n, 2, 1)) = n
2

for even n,
and α(G(n, 2, 1)) = n−1

2
for odd n.

Problem 53. Let r(A) be the same as in formula (2). Prove that always r(A) > 2|A|2
n
− |A|.

Solution. The set A is a subset of Rn. For every i ∈ Rn, let ki be the number of vertices of the
graph G(n, 2, 1) (“ twos”) which belong to A and contain i. It is clear that for fixed i, any two “ twos”
corresponding to this i form an edge in G(n, 2, 1). Therefore,

|{{x,y} ∈ E(n, 2, 1) : x,y ∈ A}| >
n∑
i=1

C2
ki
.

At the same time k1 + . . . + kn = 2|A|. It is easy to show that, under these constraints, the minimum of
n∑
i=1

C2
ki

is achieved at ki = 2|A|
n

, i = 1, . . . , n, which implies the bound

|{{x,y} ∈ E(n, 2, 1) : x,y ∈ A}| >
n∑
i=1

C2
ki
>

2|A|2

n
− |A|.

Problem 54. Derive from the previous problem the inequality α(G1/2(n, 2, 1)) 6
(

1
2

+ ε
)
n log2 n, which

is true for every ε > 0 almost surely.

Solution. We know the estimate from Problem 53, so we have

∑
A⊂V (n,2),|A|=k

2−|{{x,y}∈E(n,2,1): x,y∈A}| < Ck
C2

n
2−(1+o(1)) 2k2

n <

(
eC2

n

k

)k
2−(1+o(1)) 2k2

n < 2kn2kk−k2−(1+o(1)) 2k2

n =

= 22k log2 n−(1+o(1))k log2 k−(1+o(1)) 2k2

n .
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Therefore, for a suitable k ∼ 1
2
n log2 n we obtain

2 log2 n− (1 + o(1)) log2 k − (1 + o(1))
2k

n
< 0,

then

2k log2 n− (1 + o(1))k log2 k − (1 + o(1))
2k2

n
= k

(
2 log2 n− (1 + o(1)) log2 k − (1 + o(1))

2k

n

)
→ −∞.

That is, we have shown that P (Xk > 1) 6MXk → 0 and the estimate is proved.

Problem 55∗. Prove a lower bound for α(G1/2(n, 2, 1)) which has order of magnitude cn log2 n with
some c > 0.

Solution. The proof of this fact is quite long. If you want you can find it in [5].

Problem 56∗∗. Find a constant c in the assertion: for any ε > 0, almost surely

(c− ε)n log2 n 6 α(G1/2(n, 2, 1)) 6 (c+ ε)n log2 n.

Solution. Unfortunately, by the beginning of the conference, this problem has not been solved. And the
students did not change this fact.
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