
Combinatorial geometry and graph colorings: fromalgebra to probabilityA.M. Raigorodskii, with the help of V. Bulankina and A. Gusev1 De�nitions and notationOne of the most famous and fascinating objects of combinatorial geometry is the chromatic numberof a space. Before we introduce it, we remind that the space R
n, which is called the n-dimensionalEuclidean space, is just the set of all \points" x, each of which is a sequence consisting of n real numbers:x = (x1; : : : ; xn). Moreover, between any two points x = (x1; : : : ; xn) and y = (y1; : : : ; yn), one can �ndthe distance using the formula

|x− y| = √(x1 − y1)2 + : : :+ (xn − yn)2:In particular, for n = 1, we get the usual line, for n = 2 | the usual plane, for n = 3 | the usual space.The chromatic number of R
n is the quantity denoted by �(Rn) and equal to the minimum number ofcolors needed to color all the points of the space R

n, so that the distance between any two points of thesame color is not 1.We will start from the simplest facts, which are widely known, and we will �nally come to advancedresults obtained just few months before the Summer Conference. Moreover, the methods, which we shallstudy, will be very di�erent and nontrivial varying from linear algebra to probability theory and randomgraphs.2 Problems before the intermidiate �nish2.1 The simplest bounds for the chromatic numberProblem 1. Prove that �(R1) = 2.Problem 2. Prove that �(R2) > 4.Problem 3. Prove that �(R2) 6 7.Problem 4. Prove that �(R3) 6 27.Problem 5. Prove that �(R3) > 5.Problem 6. Prove that �(Rn) is �nite for every n.Problem 7∗. Prove that �(Rn) 6 (d√ne+ 1)n. 1



Problem 8. Prove that in R
n there is a set of n+1 points, whose pairwise distances are equal to 1, andtherefore, �(Rn) > n+ 1.Problem 9∗. Prove that �(Rn) > n+ 2.2.2 Distance graphs of special type, their simplest properties, and the con-nection with the chromatic number of a spaceRecall that the scalar product of vectors x = (x1; : : : ; xn);y = (y1; : : : ; yn) in R

n is the expression(x;y) = x1y1 + : : :+ xnyn:One can easily check that always
|x− y|2 = (x;x) + (y;y)− 2(x;y): (1)Let r; s be some natural numbers. For each n ∈ N denote by G(n; r; s) the graph, whose set of verticesis V (n; r) = {x = (x1; : : : ; xn) : xi ∈ {0; 1}; x1 + : : :+ xn = r}and whose set of edges is E(n; r; s) = {{x;y} : (x;y) = s}:In other words, vertices are all possible vectors consisting of 0s and 1s, such that in every such vector onehas exactly r 1s and n − r 0s. In turn, by edges those and only those vertices are joined whose scalarproduct equals s. Due to formula (1) one can say that edges are those and only those pairs of verticeswhose distance equals √2r − 2s. This is why the graphs G(n; r; s) are called distance graphs.It is also convenient to have the following interpretation of a graph G(n; r; s). Its vertices can beconsidered as all possible r-element subsets of the set Rn = {1; 2; : : : ; n}. Its edges can be considered aspairs of subsets whose intersections have cardinalities equal to s. Please make sure that you understandit! Recall that an independent set of vertices of a graph is a set, in which every two vertices are not joinedby an edge. The independence number �(G) of a graph G is the number of vertices in any maximal (bycardinality) independent set. The chromatic number �(G) of a graph G is the minimum number of colorsneeded to color all the vertices of the graph in such a way that between any two vertices of the same color,there are no edges.Problem 10. Prove that for any n; r; s, one has �(Rn) > �(G(n; r; s)).Problem 11. Prove that for every graph G = (V;E), one has �(G) >

|V |�(G) .Problem 12. Find �(G(n; 3; 1)). Derive from the obtained result a considerable improvement to thebound in the problem 9.Problem 13∗. Find �(G(n; 3; 1)) for n = 2k. Hint. Use the problems 11 and 12 as well as the followinglemma and induction by k.Lemma 1. Let n be an even number and Pn be the set of all unordered pairs {a; b} of natural numbersboth of which do not exceed n. Then there exist such sets of pairs B1; : : : ; Bn−1 thatPn = B1 t : : : tBn−1:2



Moreover, for any i = 1; : : : ; n− 1, no two pairs from Bi contain a common element. For odd n, we havea partition Pn = B1 t : : : tBn;and, again for any i = 1; : : : ; n, no two pairs from Bi contain a common element.Problem 14∗∗. Find sharpest possible bounds (ideally | a formula) for �(G(n; 3; 1)) for every n.Problem 15. Prove that �(G(n; r; s)) > Cr−s−1n−s−1.Problem 16∗. Prove that �(G(n; r; 0)) = Cr−1n−1, if 2r 6 n.Problem 17. Prove that �(G(n; r; 0)) 6 n− 2r + 2, if 2r 6 n.Problem 18. Prove that �(G(n; r; s)) 6 CsrCr−sn−r + 1.Problem 19. Prove that �(G(n; r; s)) 6 Cs+1n .Problem 20∗. Let k = [ r−1s ]. Prove that �(G(n; r; s)) 6 k · Cs+1
dnk e.Problem 21∗. Prove that n − r + 1 6 �(G(n; r; r − 1)) 6 n for n = 2k. Hint. Use Lemma 1 andinduction by r and k.Problem 22∗∗. Find �(G(n; r; r − 1)) or at least re�ne the bounds from the problem 21.Please �nd out that none of the results that you have obtained does not allow you to improve thelower bounds of the value �(Rn) found in the problems 9, 12. In view of the problem 11, it be good tostudy upper bounds for the independence numbers of the graphs G(n; r; s). It turns out that many of suchbounds can be obtained with the help of the linear algebra method. Thus, in the next section, we willrecall some basic notions of linear algebra.2.3 Basics of linear algebra and its applicationsWe say that vectors x1; : : : ;xt in R

n are linearly independent, if the equality c1x1 + : : : + ctxt = 0 ispossible only in the case when c1 = : : : = ct = 0.Problem 23. Prove that the maximum number of linearly independent vectors in R
n equals n.Problem 24. Prove that if x1; : : : ;xn form an arbitrary system of linearly independent vectors in R

n,then any vector x ∈ R
n can be represented as x = c1x1 + : : : + cnxn, where c1; : : : ; cn are real numbers.(The system x1; : : : ;xn is called a basis of the space and the expression c1x1 + : : : + cnxn is called linearcombination of the vectors x1; : : : ;xn with coeÆcients c1; : : : ; cn. In these terms, any vector x ∈ R

n canbe represented as a linear combination of the vectors of the basis.)Let p be a prime number. Let Zp be the set of congruences modulo p. The space Z
np , similarly to R

n,is just the set of all the sequences of numbers from Zp. The operations of the sum of \vectors" x;y ∈ Z
npand of their product with elements of Zp is done, as usual, coordinate by coordinate, but, this time, everycoordinate is taken modulo p. 3



The notions of linear independence and of a basis for Z
np are de�ned in the same way as for R

n.However, here all the numbers ci are elements of Zp | not R, | and the equality to zero is understoodas the equality to zero modulo p.Problem 25. Prove that the maximum number of linearly independent vectors in Z
np equals n and thatany maximal system forms a basis.Problem 26. Let W = {x1; : : : ;xt} be an arbitrary independent set of vertices of the graph G(n; 3; 1).Prove that the vectors x1; : : : ;xt are linearly independent in Z

n2 and thus �(G(n; 3; 1)) 6 n, which is onlyby an \epsilon" weaker than the result of the problem 12!Let F ∈ {R;Zp}. Let x1; : : : ; xn be \variables". By a monomial depending on these n variables wemean an expression of the form xa11 · : : :·xann , where a1; : : : ; an are some non-negative integers. A polynomialis an arbitrary linear combination of monomials. More precisely, a polynomial P belongs to F [x1; : : : ; xn],if its coeÆcients are from F . Polynomials are added and multiplied according to the usual rules. Also ifP ∈ F [x1; : : : ; xn], then it can be multiplied by any element of F . In any case, the rules of summation andmultiplication of the coeÆcients of polynomials are de�ned by the rules of summation and multiplication inthe set F . The degree of a monomial is the sum of the degrees of its variables. The degree of a polynomialis the maximum of the degrees of its monomials. A polynomial P ∈ F [x1; : : : ; xn] equals zero, if all itscoeÆcients are equal to zero in F . Polynomials P1 ∈ F [x1; : : : ; xn]; : : : ; Pt ∈ F [x1; : : : ; xn] are linearlyindependent over F , if c1P1 + : : :+ ctPt = 0 only in the case when all the numbers c1 ∈ F; : : : ; ct ∈ F areequal to zero in F . It is obvious that any polynomial is generated by the basis consisting of its monomials.Problem 27. Prove that if some polynomials are linearly independent over their F , then their numberdoes not exceed the number of monomials in a basis, which generates all these polynomials.Problem 28. Let W = {x1; : : : ;xt} be an arbitrary independent set of vertices of the graph G(n; 5; 2).Let polynomials P1 ∈ Z3[y1; : : : ; yn], P2 ∈ Z3[y1; : : : ; yn], : : : , Pt ∈ Z3[y1; : : : ; yn] be given by formulaePi(y) = Pi(y1; : : : ; yn) = (xi;y)((xi;y)− 1); i = 1; : : : ; t:For example, if x1 = (1; 1; 1; 1; 1; 0; : : : ; 0), x2 = (0; : : : ; 0; 1; 1; 1; 1; 1), thenP1(y1; : : : ; yn) = (y1+y2+y3+y4+y5)(y1+y2+y3+y4+y5−1) = y21+: : :+y25+2y1y2+: : :+2y4y5−y1−: : :−y5;P2(y1; : : : ; yn) = (yn−4 + yn−3 + yn−2 + yn−1 + yn)(yn−4 + yn−3 + yn−2 + yn−1 + yn − 1) == y2n−4 + : : :+ y2n + 2yn−4yn−3 + : : :+ 2yn−1yn − yn−4 − : : :− yn:Prove that the polynomials P1; : : : ; Pt are linearly independent over Z3 and therefore �(G(n; 5; 2)) 6C2n + 2C1n.Problem 29. Assume that in the conditions of the previous problem the polynomials Pi are substitutedby P ′i according to the following rule: every monomial of the form y2i is changed by yi, and after thatmonomials of the same form are added. Prove that the polynomials P ′1; : : : ; P ′t corresponding to thevectors from an independent set of vertices W of the graph G(n; 5; 2) are also linearly independent over
Z3, similarly to the initial polynomials P1; : : : ; Pt. Derive from this fact the bound �(G(n; 5; 2)) 6 C2n andcompare it with the bound from the problem 15.Problem 30. Derive from the result of the previous problem a lower bound for �(Rn), which considerablyimproves the bound from the problem 12. Ensure yourselves, however, that, in view of the problem 19,substantial further advances based on the graph G(n; 5; 2) cannot be done.4



Problem 31. Let W = {x1; : : : ;xt} be an arbitrary independent set of vertices of the graph G(n; 9; 4).Let polynomials P1 ∈ Z5[y1; : : : ; yn], P2 ∈ Z5[y1; : : : ; yn], : : : , Pt ∈ Z5[y1; : : : ; yn] be given by the formulaePi(y) = Pi(y1; : : : ; yn) = (xi;y)((xi;y)− 1)((xi;y)− 2)((xi;y)− 3); i = 1; : : : ; t:Prove that the polynomials P1; : : : ; Pt are linearly independent over Z5.Problem 32. Which upper bound for �(G(n; 9; 4)) follows from the previous problem?Problem 33. Let in the conditions of the problem 31 the polynomials Pi be replaced by some P ′iaccording to the following rule: in them, every monomial, which appears after opening the brackets andsumming similar monomials, has of course the form ya11 · : : : · yann ; if among the numbers ai, one has somenumbers greater than or equal to 2, then we replace all of them by 1s and sum up similar monomials.For example, the monomial y21y22 is transformed to y1y2 and the same is true for the monomials y21y2; y1y2,etc. Prove that the polynomials P ′1; : : : ; P ′t corresponding to the vectors from an independent set W of thegraph G(n; 9; 4) are also linearly independent over Z5, just as it was with the initial polynomials P1; : : : ; Pt.Derive from this fact the bound �(G(n; 9; 4)) 6 C4n + C3n + C2n + C1n + C0n and compare it with the boundfrom the problem 15.Problem 34. Derive from the result of the previous problem a lower bound for �(Rn), which considerablyre�nes the bound from the problem 30. Ensure yourselves, however, that, in view of the problem 19,substantial further advances based on the graph G(n; 9; 4) cannot be done.Problem 35. Let r and s be such that r − s = p, where p is a prime number and r − 2p < 0. Provethat �(G(n; r; s)) 6

p−1
∑k=0Ckn. Compare this bound with the bound from the problem 15.Problem 36∗. Explore lower bounds for the quantity �(Rn), which follow from the results of the previousproblem. How do these bounds correlate with the bounds from the problem 19?3 Problems after the intermediate �nishBefore the intermediate �nish we have seen how important are the independence numbers of graphs forobtaining lower bounds on the chromatic number of a space. Moreover, we considered di�erent sequencesof distance graphs | the sequences {G(n; r; s)}∞n=1 with given r and s. It is interesting to understandhow will be changed the independence numbers, if, instead of the graphs G(n; r; s), we take their spanningsubgraphs, i.e., if we take the same sets of vertices and partially remove the edges. It seems to beevident that the independence numbers must become substantially larger, provided we remove manyedges. However, surprisingly, sometimes this is true, but sometimes this is completely wrong! In order toobtain the corresponding results, let us learn some random graphs and some probability theory.3.1 The random Erd}os{R�enyi graph and some of its probabilistic character-isticsLet Vn = {1; : : : ; n} be a set of vertices. In principle, one can construct on this set C2n edges, if we do notallow multiple edges, loops and orientation. Let us each of these C2n potential edges draw with probabilityp ∈ [0; 1], which is the same for every edge. Di�erent edges appear independently. Let G = (Vn; E) be agraph which can appear as a result of the just-described probabilistic procedure. Denote the probability5



of its appearance by P(G). Clearly it is equal to p|E|(1− p)C2n−|E|. If A is a property of a graph, then itsprobability | P(A) | is the sum over all the graphs G, which have property A, of the probabilities ofthese graphs.Denote by 
n the set of all graphs on the vertices Vn. Any function X de�ned on 
n and takingreal values is called random variable. For example, the number of triangles in a graph or its number ofconnected components, or its independence number are random variables. Here you must understand thatthe variables are random only due to the fact that apriori we do not know which graph will (randomly)come to us. When a graph is already born the value of X is determined uniquely!Any random variable has some \mean value" | the so-called (mathematical) expectation. The expec-tation of a variable X is the number MX de�ned by the formula MX = ∑G∈
nX(G)P(G). We just sum upthe values of the function X on all the graphs multiplied by the probabilities of these graphs. Of coursethis is some weighted average (weights are probabilities) | a kind of the mass centre). Let us learn tocalculate expectations and apply the obtained results to the study of the properties of random graphs.Problem 37. Prove that if a random variable is just a constant c, then Mc = c.Problem 38. Let X1; X2 be random variables and c1; c2 be some �xed numbers. Certainly c1X1 + c2X2is also a random variable. Prove that its expectation equals c1MX1 + c2MX2. This property is calledlinearity of expectation.Problem 39. Using linearity of expectation �nd expectations of a) the number of triangles in the randomgraph; b) the number of connected components of the random graph, each of which is a cycle on k vertices(k is a �xed given number); c) the number of independent sets in the random graph, each of which hascardinality k (k is a �xed given number).Problem 40. Prove Markov's inequality: if X is a random variable taking non-negative values and a isa positive number, then P(X > a) 6
MXa .Problem 41. Using Markov's inequality prove that if p = 12 , then P(�(G) 6 2 log2 n) → 1 as n → ∞ (itis used to say that \almost surely �(G) 6 2 log2 n").Note that actually for p = 12 almost surely �(G) > (2− ") log2 n for any given arbirarily small " > 0.More precisely, | and we shall use it later, | the following theorem holds.Theorem 1. For any " > 0 and large enough n the inequality

P(�(G) > (2− ") log2 n) > 1− 2−nholds.Thus, for p = 12 , almost surely the independence number is approximately 2 log2 n. In other words,what's happening? We take the complete graph on n vertices and we delete some of its edges, eachwith probability 12 . A typical graph, which appears as a result of this procedure, has about C2n2 edges |two times less than the complete graph has. And the independence number of a typical graph is in alogarithm times greater than the independence number of the initial graph (the independence number ofthe complete graph is of course 1). OK, the number of edges is two times smaller and the independencenumber increases: quite natural. It turns out that for some G(n; r; s) when deleting their edges randomly,we get the same \expected" result (the independence number becomes approximately log times bigger).But the miracle is that this happens not everytime! For many G(n; r; s) the independence number doesnot change at all! Below, we will study together examples of both situations.6



3.2 Random subgraphs of the graph G(n; 3; 0)Let G1=2(n; 3; 0) be a random subgraph of the graph G(n; 3; 0) obtained by deleting mutually indepen-dently some edges of the graph G(n; 3; 0), each with probability 1=2.Problem 42. If you solved the problem 16, then just derive from it that �(G(n; 3; 0)) = C2n−1. Otherwise,try to solve this particular case of that problem.In a series of problems below, we will prove that almost surely �(G1=2(n; 3; 0)) 6 C2n−1 (1 + 1lnn). Thisis exactly what we mentioned above speaking about a surprising phenomenon: there is no growth in logtimes; if there is some growth, then it is only in such a number of times that itself tends to 1 as n → ∞!One can prove even stronger facts, but this is very diÆcult, and we do not want to do it here: we justwant to see the essence!In what follows, we will for conciseness omit integer parts around quantities which must be integer. Forexample, writing Cklog2 n means, depending on context, that actually we take an upper or a lower integerpart of the number log2 n. None of the computations will become false after this roughening.Problem 43. Put k = C2n−1 (1 + 1lnn). Assume that k is integer (cf. a remark before the problem). LetA ⊂ V (n; 3) be an arbitrary set of vertices of the graph G(n; 3; 0) having cardinality k. Denote by r(A)the number of edges of the graph G(n; 3; 0), whose both ends are in A. Since |A| = k > �(G(n; 3; 0)), itis clear that r(A) > 0. Let Xk be the random variable equal to the number of independent sets of size kin a graph G1=2(n; 3; 0). Prove that
MXk = ∑A⊂V (n;3): |A|=k(12)r(A) : (2)Problem 44. Prove that our aim will be attained, if we will prove that MXk → 0 as n → ∞.Clearly we have to learn bounding from below the quantity r(A). For each A, denote by B = B(A) any(chosen for everytime) subset of A, which is independent in G(n; 3; 0) and has the maximum cardinalityamong all analogous subsets of the set A.Problem 45. Let A ⊂ V (n; 3), |A| = k. Let B = B(A). Note that k ≈ n22 . Assume that |B| issubstantially smaller than k: for example, let |B| < n1:9 (here the strange number 1.9 is taken almostarbitrarily; important is that it is strictly smaller than 2). Prove that for large enough n the inequalityr(A) >

k23|B|
holds (being more careful one can replace 3 in the denominator by \almost" 2, but does notmatter).Problem 46. Let A ⊂ V (n; 3), |A| = k. Let B = B(A). Let |B| > 9n or, even better (in addition tothe previous problem), |B| > n1:9. Prove that r(A) > (|B| − 9n)(|A| − |B|).Problem 47. Decompose sum (2) into two parts: in the �rst part, only those A will be taken, for which

|B| < n1:9; in the second part, all the other sets A will be considered. To the summands in both partsapply the bounds from the corresponding problems and make it sure that the whole sum (2) does reallytend to zero, which means that we are done!How can we change the threshold n1:9 in order to still get the same result?
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3.3 Random subgraphs of the graph G(n; 3; 1)Let G1=2(n; 3; 1) be a random subgraph of the graph G(n; 3; 1) obtained by deleting mutually indepen-dently some edges of the graph G(n; 3; 1), each with probability 1=2. It seems that everything is the sameas with the graphs G(n; 3; 0). This is completely wrong!Recall that �(G(n; 3; 1)) ≈ n (see the problem 12).Problem 48∗. Write down an analog of inequality (2) and prove an analog of the bound from the problem45. Ensure yourselves eventually that there exists a c > 0, with which almost asurely �(G1=2(n; 3; 1)) 6cn log2 n.Problem 49. Prove that in the graph G(n; 3; 1), there exist approximately n2 complete subgraphs, eachhaving about n4 vertices, such that every two of them are not connected by an edge.Problem 50. With the help of the previous problem and Theorem 1 prove that for every " > 0, almostsurely �(G1=2(n; 3; 1)) > (1− ")n log2 n.Thus, for G1=2(n; 3; 1), just as it was for the Erd}os{R�enyi random graph, we again have the growth ofthe independence number in approximately logarithm of the number of vertices times!Problem 51∗. Try to improve into a constant number of times the bound in the problem 50.3.4 Random subgraphs of the graph G(n; 2; 1)Problem 52. Find �(G(n; 2; 1)).Problem 53. Let r(A) be the same as in formula (2). Prove that always r(A) >
2|A|2n − |A|.Problem 54. Derive from the previous problem the inequality �(G1=2(n; 2; 1)) 6
(12 + ")n log2 n, whichis true for every " > 0 almost surely.Problem 55∗. Prove a lower bound for �(G1=2(n; 2; 1)) which has order of magnitude cn log2 n withsome c > 0.Problem 56∗∗. Find a constant c in the assertion: for any " > 0, almost surely(c− ")n log2 n 6 �(G1=2(n; 2; 1)) 6 (c+ ")n log2 n:References[1] A.M. Raigorodskii, The chromatic numbers, Moscow Centre for Continuous Mathematical Education(MCCME), Moscow, Russia, 2003 (in Russian).[2] A.M. Raigorodskii, The linear algebra method in combinatorics, Moscow Centre for Continuous Math-ematical Education (MCCME), Moscow, Russia, 2007 (in Russian).[3] A.M. Raigorodskii, Probability and algebra in combinatorics, Moscow Centre for Continuous Mathe-matical Education (MCCME), Moscow, Russia, 2008 (in Russian).8



[4] A.M. Raigorodskii,Models of random graphs, Moscow Centre for Continuous Mathematical Education(MCCME), Moscow, Russia, 2011 (in Russian).
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