
A square from similar rectangles 

--- Hung-Hsun Yu, Brian Chen 

We call a number r tilible if there exists a square that can be tiled by rectangles whose 

ratio of length of the two sides is r. Obviously, if r is tilible then 1/r is also tilible. 

We first go through Problem 2,3,4,5,6,8,9. 

 

Problem 2.  

A. Assume that the ratio of rectangles in Figure 1 is b, then the ratio of the window 

is 
1

2

b

b
+ . So if the window is a square, we can get that 2 2 2 0b b− + = , which 

has no real root. Hence the answer is yes. 

B. Assume that the ratio of rectangles in Figure 1 is b, then the ratio of the window 

is 
1

3 2

b

b
+ . So if the window is a square, we can get that 22 6 3 0b b− + = , which 

has positive root 
3 3

2

±
 . Hence the answer is no. 

Problem 3. 

Consider the polynomial 3 2( ) 2 1f x x x x= − + − , since (0) 1 0f = − <  and  

lim ( ) 0
x

f x
→+∞

= +∞ > , there exists a positive root r of f(x).  

Now, we claim that one can tile a square by rectangles whose ratio of two lengths is r. 

In Figure 3, it’s easy to see that each rectangle has ratio r, and since 
3 2 2 1 0r r r− + − = , we know that 2 31 2r r r+ = + , so Figure 3 is a square. Notice that 

rectangles in Figure 3 aren’t congruent, so we’re done. Hence the answer is yes. 
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Problem 4. 

The answer is no. Otherwise, assume that square ABCD is tiled by 5 squares and its 

side length is 1. If a square covered at least two points of A, B, C, D, it should cover 

all of them, hence ABCD is tiled by only 1 square, a contradiction. 

So there are four distinct squares cover the point A, B, C, D, respectively. Let square a 

be the square that cover the point A, etc. 

If square a and square b don’t touch each other, then the remain square e must cover 

the area between square a and b. Now, if square d doesn’t touch square a, then there is 

no square remain to cover the area between square a and d. Therefore, square d 

touches square a, and square c touches square b. Assume that sa is the side length of 

square a, etc. Since square a doesn’t touch square b, and square d touches square a , 

square c touches square b , we can get that 1, 1, 1
a b a d b c

s s s s s s+ < + = + = , so 

1
c d

s s+ > . Hence square c and d have a common region, a contradiction. Hence 

square a, b, c, d touch each other, and then 1
a b b c c d

s s s s s s+ = + = + = , which gives 

us ,
a c b d

s s s s= = . Hence 2 2 2 2 21
a b c d e

s s s s s= + + + +  

2 2 2 2 2 2 22 2 ( ) 1
a b c d a b a b

s s s s s s s s> + + + = + ≥ + = , also a contradiction. In conclusion, it’s 

impossible to tile a square by 5squares. 



Problem 5. 

C. Assume that a is the side length of square A in Figure 4, etc. W.L.O.G. b = 1, then 

it’s easy to get that 1, 2, 3, 4, 2 1, 3 3c d a d e d f g d h n= + = + = + = = + = − , 

since e f i h f+ = = − , we know that 7d = , so the big rectangle we get has side 

length 32 and 33, which is not a square. So the board isn’t square. 

 

D. Let the side lengths of 21 small square in figure D be 2,4,7, 8,9, 

11,15,16,17,18,19,24,25,27,29,33,35,37,42,50, one can show that the big rectangle is 

also a square. 

 

Figure 4 

 

Problem 6. 

The answer is yes. From Figure D, we know that 21 squares whose side length is 1, 

2,4,7, 8,9, 11,15,16,17,18,19,24,25,27,29,33,35,37,42,50 can tile a square. Assume 

that they tile a square of side length x, then it’s easy to know that by adding 21 

squares whose side length is 2x, 4x, 7x, …, 50x, we can get a square of side length x
2
. 

Continue this operation, and we’re done. 

 

Problem 8. 

The answer is no.  

If rational numbers a1, a2, b1, b2 satisfy 1 1 2 22 2a b a b+ = + , then  

1 2 1 2( ) 2b b a a− = − . Since 2 isn’t rational, we have 1 2a a=  and 1 2b b= . So  



2 2 21 2 ( 2) ( 2 ) 2 2a b a b ab+ = + = + +  implies  

a
2
+2b

2
=1, ab=1/2. So 2 2 2 22 2 0, ( ) 0, 0a ab b a b b a b− + = − + = = = , a contradiction. 

 

Problem 9.(De Bruijn’s Theorem) 

We claim that a rectangle can be tiled by rectangles with one of the sides equal to 1 if 

and only if it has at least one side whose length is a positive integer. 

 

First, we prove that if a rectangle can be tiled by rectangles with one of the sides equal 

to 1, than it has at least one side whose length is a positive integer. Dissect the plane 

into squares of side length 1/2 and color them like a checkerboard. Set one of the big 

rectangle’s vertices at (0,0), and orient its sides to be parallel to the checkerboard’s 

grid lines. It’s easy to see that every small rectangle covers equal area of black and 

white, so the big rectangle must have equal area of black and white, too. 

Now, assume that the big rectangle’s two sides have length a and b, our target is to 

prove that {a}=0 or {b}=0. If it doesn’t happen, W.L.O.G. {a}>{b}. It’s easy to see 

that when we move away the rectangle ([a],[b]), ([a],b), (a,[b]), (a,b), the remain 

region has equal area of black and white. So the rectangle ([a],[b]), ([a],b), (a,[b]), 

(a,b) has equal area of black and white, hence a {a}×{b} rectangle cover same 

area of black and white. W.L.O.G. ([a],[b]) is in the black squares. 

Case 1 0 < {b} < {a} < 1/2 

In this case, the whole {a}×{b} rectangle is black, a contradiction. 

 

Figure 5 

 

 

 

 

 

 

 

 



Case 2 0 < {b} < 1/2 < {a} < 1 

We can “fold” the rectangle like Figure 6 shown, and this case is reduced to Case 1, a 

contradiction. 

 

Figure 6 

Case 3 1/2 < {b} < {a} < 1 

We can fold the rectangle like Figure 7 shown, and this case is reduced to Case 2, also 

a contradiction. 

 

Figure 7 

In conclusion, there must be at least one 0 between {a} and {b}, so the big rectangle 

has at least one side whose length is positive integer. 

 

Last, we prove that if the rectangle has at least one side whose length is a positive 

integer, then it can be tiled by rectangles with one of the sides equal to 1. Assume that 

it has a side whose length is a positive integer n, then dividing the rectangle into n 

equal rectangles satisfies the condition, and we’re done. 

 

Back to the main problem: When is it possible to tile a square by rectangles similar to 

a given one? 

We can get a very easy result first. 

 

 

 

 



Theorem 1 Given a positive rational number p, then it is possible to form a rectangle 

of ratio r by some congruent rectangles of ratio pr. 

 

Proof  Assume that p=a/b, where a and b are positive integers, then we can put a 

rows and b columns of congruent rectangles of ratio pr, form a rectangle of ratio r, 

which is what we want. 

 

Plugging r by 1 and p by m/n, we can solve Problem 1. 

 

From Theorem 1, we know that if a square is tiled by some rectangles of ratio r, then 

we can tile each small rectangle to some rectangles of ratio pr. So we tile a square by 

some rectangles of ratio pr successfully. Notice that 1/p is also a positive rational 

number, we know that: 

 

Corollary 1 r is tilible if and only if pr is tilible for all positive rational number p. 

 

Since 1 is tilible, so from Corollary 1, we can get that 

 

Theorem 2 All positive rational numbers are tilible. 

 

Next, we prove a strong statement. For a set S, where S is a set of positive number, we 

define four operations: 

Operation 1 If ,a b S∈ , then put a+b into S. 

Operation 2 If ,a b S∈ , then put 
a b

ab

+
 into S. 

Operation 3 If , ,a b c S∈ , then put , ,
ab bc ca

a b c a b c a b c+ + + + + +
 into S. 

Operation 4 If , ,a b c S∈ , then put , ,
ab bc ca

a b b c c a
c a b

+ + + + + +  into S. 

Then we have the following result. 

 

Theorem 3 If a rectangle of ratio k can be tiled by some rectangles of ratio r, then we 

can do finitely many operations to S={r, 1/r} to make k be in S. 

 

Proof  Define Ra by a
a

a

h
R

v
= , where pa is a rectangle, ha is the length of the 

horizontal side of pa, and va is the length of the vertical side of pa. Let P be the set of 



all small rectangles. It’s easy to show that 
1

{ , }
a a

R r p P
r

∈ ∀ ∈ . 

Now, consider a graph ( , )G v e , where there is one vertex corresponding to each 

vertical line that is a side of some rectangles, and there is one edge e   

corresponding to each rectangle 
e

p . An edge connects the vertices corresponding to 

its rectangle’s left and right side. Figure 8 is an example. 

 

Figure 8 

Now, if there is a vertex v whose degree is 2, and the edges incident to vertex v are a 

and b, which correspond to rectangles ,
a b

p p . We merge the rectangles 
a

p  and 
b

p  

to a rectangle 
s

p . It’s easy to show that 
s a b

R R R= + . We call this operation 

Combination 1. 

 

Figure 9 

 

If there are two multiple edges a and b between two vertices 1 2,v v , we merge the 

rectangles 
a

p  and 
b

p  to a rectangle ps. It’s easy to show that a b
s

a b

R R
R

R R
=

+
 . We 

call this operation Combination 2. 

 

Figure 10 

 

 

 



If is a triangle in the graph with edges a, b, c, we claim that we can re-divide the 

diagram formed by , ,
a b c

p p p  into three rectangles , ,
u v w

p p p  satisfy 

b c
u

a b c

R R
R

R R R
=

+ +
 , c a

v

a b c

R R
R

R R R
=

+ +
, a b

w

a b c

R R
R

R R R
=

+ +
.  Assume that AB = x,  

AC = y, then AG = Rax, CD = Rby, EF = Rax-Rby. Now, it’s easy to check that when 

( )
b b c a b

u

a b c

R R R y R R x
h

R R R

+ −
=

+ +
, b c a

u

c c

R R R
v y x

R R

+
= − , 

( )
a a c a b

v

a b c

R R R x R R y
h

R R R

+ −
=

+ +
, 

a c b
v

c c

R R R
v x y

R R

+
= − , ( )a b

u

a b c

R R
h x y

R R R
= +

+ +
, ( )

u
v x y= + , the three rectangles pu, 

pv, pw satisfy the condition. We call this operation Combination 3. 

 

Also, if there is a vertex whose degree is 3, and the edges incident to this vertex are u, 

v, w, we can re-divide the diagram formed by pu, pv, pw into three rectangle pa, pb, pc. 

It’s easy to calculate that v w
a v w

u

R R
R R R

R
= + + , w u

b w u

v

R R
R R R

R
= + + , 

u v
c u v

w

R R
R R R

R
= + + . We call this operation Combination 4. 

 

Figure 10 

Now, we’re going to use a theorem. 

Theorem(Epifanov) Given a connected planar graph, choose any two vertices to be 

terminals. Then one can reduce the graph by doing Combination 1, 2, 3, 4 and 

deleting a vertex whose degree is 1 without deleting the terminal to an edge, which 

connects two terminals. 

 

Choose the left most and the right most vertices to be terminals, then it’s easy to see 

that there aren’t any vertices whose degree is 1 except the terminals, so deleting a 

vertex whose degree is 1 isn’t necessary. Hence, from Epifanov’s Theorem we know 

that we can do finitely many times of Combination 1, 2, 3, 4 to make the graph 

contains only an edge e and two vertices. When the graph contains only an edge, 

there’s only one rectangle remains, which is of the ratio k by the condition.  



Now, we prove that if in the n
th

 combination, a rectangle p
α

 appears, then we can 

make R
α

 be into the set S after finitely many of operations. Use induction. 

n = 0 is trivial since we let 
1

{ , }S r
r

= . 

If it’s true that we can make R
α

 into S after finitely many of operations for all 

rectangles p
α

 which appear in the m
th

 combination ( 0 m i≤ ≤ ), consider the (i+1)
th

 

combination. If it’s doing Combination 1 to rectangle pa and pb, then 
a b

R R R
α

= + . 

Since Ra and Rb are both in S (because pa and pb already appear), we can do Operation 

1 to make R
α

 be into S. 

For the same reason, if the (i+1)
th 

combination is doing Combination 2, 3, 4, we can 

do Operation 2, 3, 4 to make R
α

 be into S. 

So we’re done proving this by induction. 

Since we can do finitely many times of combination to let the big rectangle 
e

p  

appears, we can also do finitely many times of operation to let 
e

R k=  be into S, 

which is what we want. 

Hence the theorem is proved. 

 

By Theorem 3, we are able to get some results. 

 

Theorem 4 A rectangle may be dissected into squares if and only if its ratio is a 

positive rational number. 

 

If a rectangle may be dissected into squares, plug r by 1 in Theorem 3, we know that 

the ratio of rectangle must appear in the set S obtained from finitely many operations 

applied to the set {1}. It’s easy to check that as long as the numbers in the set are all 

positive and rational, then Operation 1, 2, 3, 4 can only put another positive rational 

number into it, so S contains only positive rational numbers. Since the ratio of 

rectangle must appear in S, the ratio is a positive rational number. 

 

If a rectangle’s ratio is a positive rational number, from Theorem 1, we know that it’s 

possible to dissect it in to congruent squares, done. 

 

And so we have answered Problem 10. 

 

Theorem 5 If a, b are rational, s is a square-free positive integer and 0a b s+ > , 

then a b s+ is tilible if and only if a
2
 > sb

2
 

 

From Corollary 1, W.L.O.G. a and b are integers. 



If a
2
 > sb

2
, let n = a

2
 - sb

2
, then from Figure 8 we tile a 1 2a× rectangle successfully. 

So we can tile a square by rectangles of ratio a b s+  by Theorem 1. Hence in this 

case a b s+  is tilible. 

 

Figure 11 

If a
2
 < sb

2
, set 

1
{ , }S a b s

a b s
= +

+

, it’s easy to check that Operation 1, 2, 3, 4 

only put numbers of form x y s+ into S. Moreover, we can prove that Operation 1, 2, 

3 only put numbers of form x y s+  which satisfies x
2
 < sy

2
. Indeed, define 

N( x y s+ ) by 2 2( )N x y s x sy+ = − . It’s easy to check that N(uv)=N(u)N(v), and if 

1 1( ) 0N x y s+ < , 2 2( ) 0N x y s+ < , then 

2 2 2 2

1 2 1 2 1 1 1 1 1 2 1 2(( ) ( ) ) ( ) ( ) 2( )N x x y y s x sy y sy x x sy y+ + + = − + − + −   

1 2 1 22(( )( ) ) 0s y s y sy y< − =  

 

So if N(u) < 0, N(v) < 0, N(w)<0, then N(1/u) < 0… (1) ,N(u+v) < 0…(2),  

N(uvw) < 0…(3). From (1) we know that N(1/u) < 0, N(1/v) < 0 and from (2) we 

know that 
1 1

( ) 0N
u v

+ < , and ( ) 0
uv

N
u v

<
+

 by (2). From (2) and (1) we know that 

1
( ) 0N
u v w

<
+ +

, and ( ) 0
uv

N
u v w

<
+ +

 by (3). So is ( )
vw

N
u v w+ +

 and 

( )
wu

N
u v w+ +

. From (1) and (3) we know that ( ) 0
vw

N
u

< , and from (2) we can get 

that ( ) 0
vw

N v w
u

+ + < . So is ( )
wu

N w u
v

+ +  and ( )
uv

N u v
w

+ + . Hence, Operation 

1, 2, 3, 4 only put numbers of form x y s+  which satisfies x
2
 < sy

2
. Since N(1) > 0, 



a b s+  isn’t tilible in this case. 

In conclusion, a b s+ is tilible if and only if a
2
 > sb

2
. 

 

From Theorem 5, we know that 2 2, 2 2,3 2 2,3 2 2+ − + −  are tilible, and  

1 2, 2+  are not tilible. So Problem 7 and part of Problem 11 are solved, and 

plugging s by 2 in Theorem 5 gives the answer to Problem 12. 

 

Theorem 6 Given three positive rational number a, b, c satisfy ab > c. Assume that r 

is the root of x
3
-ax

2
+bx-c, then r is tilible. 

 

Let q = b, p = c/b-a, t = c/pq. It’s easy to know that p, q, t is rational number. So we 

can tile rectangles of ratio qr, tr by rectangles of ratio r by Theorem 1. So it’s possible 

to tile the diagram in Figure 12. 

 

Figure 12 

Since r is the root of x
3
-ax

2
+bx-c = x

3
-(t+1)px

2
+qx-pqt, we know that 

3
3 2

2

2

( 1) ,
( 1)

(1 ) 1

q
r

r qr rr qr t pr pqt p
qt r qt

t
r

+
+

+ = + + = =
+ +

+ +

  

So the big rectangle’s ratio is p, and the big rectangle can form a square by Theorem 1. 

Hence, r is tilible. 

 

Plugging a, b, c by 3, 3, 3 in Theorem 7, then one of the roots is 31 2+ , since 

33((1 2) 1) 2+ − = . So 31 2+  is tilible, and we answer part of Problem 11. 


