The division of a segment (part 2)

In this part we deal with problems, concerning concrete values of α.

- Let τ be the golden ratio: $\tau=\frac{1+\sqrt{5}}{2} \approx 1,618 \ldots$.

E1. One proposes three ways to write down a sequence of letters AABAABABAAB... Prove that all the ways give us the same result (see exact statements in points 2,3).

Here are the ways:
(1) Draw a ray on a squared sheet of paper. It starts in some node and forms an angle $\operatorname{arcctg} \tau$ with horizontal lines. We write letter A in the node where we start, and then write letters in intersection points of the ray with lines: letter A if the ray intersects a vertical line, and B if it intersects a horizontal line (see the picture).

(2) We write letter A and then fulfill the following steps: on every step we replace letter A with AAB , and letter B with AB . So, after three steps we get:
at first AAB, then AABAABAB , on the third step AABAABABAABAABABAABAB.
Prove that on each step the finite sequence is a beginning of the sequence (1).
(3) Segment $[0,1]$ is divided as in Preliminary (in the very beginning), and let $\alpha=\tau$. Then for every double number n we write down the lengths of parts in the reverse order (from point 1 to 0). We denote the long segment by A , the short one by B .

Prove that among these sequences there are infinitely many sequences, which are beginnings of the sequence (1). In fact, it is true for $n_{1}=3<n_{2}=8<\ldots$

E2. Choose two «intervals» from the sequence of Problem E1, n letters in each: the first interval contains letters from $(k+1)$-th to $(k+n)$-th, and the second one from $(m+1)$-th to $(m+n)$-th. Prove that the numbers of letters A in these "intervals" differ at most by 1 (so these numbers are almost equal).

E3. Find some other sequence that may be obtained analogously by the three (or at least two) ways.

- In the next set of problems we assume that $\alpha=\tau$.

P1. Find all possible values of L (for different n).
P 2 . What values are possible for L if n is a double number?
P3. Find all double numbers.

P4. How many double numbers are in the interval $1<\mathrm{n}<10^{\wedge} 6$? It is sufficient to give answer up to 10%.

- In the next set of problems we assume that $\alpha=\sqrt{2} \approx 1,4142 \ldots$.

T1. Find all possible values of L (for different n).
T2. What values are possible for L if n is a double number?
T3. Find all possible values of L for some other α (except $\alpha=\tau$ and $\alpha=\sqrt{2}$).

Various problems

K1. You don't know α, but you know that for any $\mathrm{n}>10$, the number L takes only one of the two values. For which α it is possible?

K2. Let L takes some value A for some n . Prove that it takes the same value A for some double number n .

Let us formulate a «converse» statement: if L takes some value A for some n , than it takes the same value A for some triple number n . Is it true?

КЗ. A problem for investigation. You don't know α but you know that for any n the number of points on every segment of length $1 / 2$ differs from $n / 2$ by at most 10 . What is possible to say about number α ? In particular:
(a) give a few examples of such α,
(b) give some sufficient condition when the situation differs: «if α is such and such, than the statement is false»,
(c) give some condition which enables us to assert that the number of points on every segment of length $1 / 2$ is between an and bn for some $\mathrm{a}<1 / 2<\mathrm{b}$ (desirably a, b are close enough to $1 / 2$).

K4. How many double and triple numbers are among $n=1,2,3 \ldots 246$ if $\alpha=113 / 248$?
K5. Find some method that enables you to find in a reasonable time without a computer the quantity of double and triple numbers for α rational, $\alpha=p / q, p<q<1.000 .000(n=1,2 \ldots q-1)$.

K6. Given the value of L if $\mathrm{n}=100: \mathrm{L}(100)=\mathrm{A}$. Is it possible to determine whether L takes finite or infinite number of values for all n and given fixed α ?

In particular, investigate the cases:
(1) A is a root of square equation with integer coefficients $\mathrm{A}^{\wedge} 2+\mathrm{qA}+\mathrm{r}=0$,
(2) A is a root of cubic equation with integer coefficients $\mathrm{A}^{\wedge} 3+\mathrm{qA}^{\wedge} 2+r A+s=0$.

K7. It is known that number α decomposes in continued fraction and its first denominators are $3,5,12$ (i.e. $\alpha=1 /(1+1 /(3+1 /(5+1 /(12+\ldots)))$. Find all double numbers between 1 and 100 .

