
Introductory problems

Problem 1. Prove that the equations a) 2x2 +2xy− y2 = 1, b) x2 − xy+ y2 = 2 have no integer solutions.

Proof. a) Analyzing residues modulo three, we see that the equation

2x2 + 2xy − y2 = 3x2 − (y − x)2 = 1

has no integer solutions.
b) First solution. Notice that x2−xy+ y2 = (x− y/2)2+3/4y2 = 2, hence y2 6 8/3, |y| 6 1, analogously

for x. From the other hand, at least one of x and y must be even, so it must be zero; if we put x = 0 then
y2 = 2, we get a contradiction.

Second solution. Clearly, if |x| > 3 or |y| > 3, the equation x2 − xy + y2 = 1
2 (x

2 + y2 + (x− y)2) = 2 has
no integer solutions. A case-by-case consideration of the remaining 25 possibilities shows that this equation
has no integer solutions.

Problem 2. Prove that each of the equations a) x2 − 2y2 = 1, b) x2 − 3y2 = 1, and c) x2 − 6y2 = 1 has
infinitely many integer solutions.

Proof. a) For every integer n the pair

x =
(3 + 2

√
2)n + (3− 2

√
2)n

2
, y =

(3 + 2
√
2)n − (3 − 2

√
2)n

2
√
2

is a solution of the equation.
b) For every integer n the pair

x =
(2 +

√
3)n + (2 −

√
3)n

2
, y =

(2 +
√
3)n − (2−

√
3)n

2
√
3

is a solution of the equation.
c) For every integer n the pair

x =
(5 + 2

√
6)n + (5− 2

√
6)n

2
, y =

(5 + 2
√
6)n − (5 − 2

√
6)n

2
√
6

is a solution of the equation.

Problem 3. Prove that the equation x2 + 1000xy+ 1000y2 = 2001 has infinitely many integer solutions.

Proof. The discriminant 10002 − 4 · 1000 of the equation x2 + 1000xy + 1000y2 = 2001 is greater than 0
and is not a perfect square. Hence, the quadratic form x2 + 1000xy + 1000y2 = 2001 is indefinite, does not
represent 0 and represents 2001 for x = y = 1. From Problem 46 it follows that the equation

x2 + 1000xy+ 1000y2 = 2001

has infinitely many solutions.

Problem 4. Fix an odd prime p. Prove that equation x2 − py2 = −1 has an integer solution if and only if
p ≡ 1 (mod 4).

Proof. Suppose that the equation x2 − py2 = −1 has an integer solution. Let us prove that p is equivalent
to 1 modulo 4. Indeed, in this case −1 is a quadratic residue modulo p, i.e., p ≡ 1 (mod 4).

Now let us prove the converse, let p ≡ 1 (mod 4). By Problem 46, the equation x2 − py2 = 1 has a
nontrivial solution.

Define by S+ the set of solutions (x0, y0) of the equation x2 − py2 = 1 such that x0, y0 > 0. Let (x0, y0)
be a solution from S+ with minimal y0. Then

(x0 − 1)(x0 + 1) = py20. (1)

It follows from (1) that either 2(x0 + 1) or 2(x0 − 1) is a perfect square. Consider two cases.
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First, assume that 2(x0+1) = d2 for a positive integer d. Then d is even ands d | y0. Let d = 2d0, and let

x1 = (x0 + 1)/d = d0, y1 = y0/d.

Then

x2
1 − py21 =

1

d2
((x0 + 1)2 − py20) =

2(x0 + 1)

d2
= 1.

Hence, (x1, y1) also belongs to S+. Clearly, y1 < y0, which contradicts the minimality of the pair (x0, y0).
Now consider the second case, let 2(x0 − 1) = d2 for some positive integer d. Then d is even and d | y0.

Let d = 2d0, and let
x1 = (x0 − 1)/d = d0, y1 = y0/d.

Then

x2
1 − py21 =

1

d2
((x0 − 1)2 − py20) =

2(1− x0)

d2
= −1.

We see that (x1, y1) is a required solution of x2 − py2 = −1.

Problem 5. Prove that for every integer m, the numbers of integer solutions of equations

x2 − xy + y2 = m and 3x2 + 9xy + 7y2 = m

are equal.

Proof. Let us show that there is a bijection between integer solutions of the equation x2 − xy+ y2 = m and
integer solutions of 3x2 + 9xy + 7y2 = m.

Let v = x + y, u = −x − 2y, clearly, they are integers. Substitute x by u + 2v, and y by −u − v in
x2 − xy+ y2. We get 3u2 +9uv+7v2. So for every solution of 3x2 +9xy+7y2 = m there is a corresponding
solution of x2 − xy + y2 = m.

Conversely, u and v in u2−uv+v2 can be replaced by an appropriate integer linear combination of x and
y. Hence, for every solution of the equation x2 − xy + y2 = m we can produce the solution of the equation
3x2 + 9xy + 7y2 = m.

Problem 6. Prove that for every integer n the equation x2 + y2 = n has an integer solution if and only if
it has a rational solution.

Proof. Let x, y be rational numbers such that x2 + y2 = n. Reduce x and y to a common denominator d
and choose the pair (x, y) with the minimal possible d. We assume that d > 1 (this means that x, y are not
integers and the equation x2 + y2 = n has no integer solutions). Let rx, ry be the integers closest to x and
y, respectively. Denote sx := x− rx, sy := y − ry. Then

|sx|, |sy| 6
1

2
, s2x + s2y = n− (r2x + r2y)− 2(sxrx + syry). (2)

Let

x′ = rx −
sx(n− r2x − r2y)

s2x + s2y
, y′ = ry −

sy(n− r2x − r2y)

s2x + s2y
.

It follows from (2) that s2x + s2y = d′/d, and 0 < d′ < d. Hence, if we write x′, y′ with common denominator
d′, then it divides d, in particular, it is less than d. Meanwhile x′2 + y′2 = n. It contradicts the minimality
of (x, y). Hence, d = 1, i.e., the equation x2 + y2 = n has integer solutions.

Problem 7. Provide an example of a quadratic equation with integer coefficients which has a rational
solution but has no integer solutions.

Proof. The equation 4x2 = 1 is the required example. It has a rational solution x = 1
2 . Clearly, it has no

integer solutions.

Problem 8. Prove that for every positive integers a and b there exist infinitely many positive integers m
such that the equation ax2 + by2 = m has no integer solutions.
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Proof. Let N be an integer. If the equation ax2 + by2 = n has integer solutions for some n 6 N , then

|x| 6
√

N

a
, |y| 6

√

N

b
.

If the equation ax2 + by2 = n has an integer solution for each n 6 N , then there exist N pairs (x, y) such

that 0 6 x 6

√

N
a , 0 6 y 6

√

N
b . We obtain

N 6
N√
ab

.

Clearly, if ab > 1, then this inequality is not held for N great enough. So it remains to consider the case
a = b = 1. But if n is equivalent to 3 modulo 4, then it cannot be represented in form x2 + y2, which ends
the proof.

Problem 9. Prove that for every integer m the equation x2 + 2y2 − 3z2 = m has an integer solution.

Proof. It is enough to show that x2+2y2−3z2 represents 0, every odd number and every number equivalent
to 2 modulo 4.

If x = y = z = 1, then x2 + 2y2 − 3z2 equals 0. Hence, x2 + 2y2 − 3z2 represents 0.
If x = u + 1, y = u, z = u, then x2 + 2y2 − 3z2 equals 2u + 1. Hence, x2 + 2y2 − 3z2 represents all the

odd numbers.
If x = u, y = u + 1, z = u, then x2 + 2y2 − 3z2 equals 4u + 2. Hence, x2 + 2y2 − 3z2 represents all the

numbers equivalent to 2 modulo 4.
If m is divisible by 4, then we factor it out and reduce the problem to one of the already considered

cases.

Quadratic forms

Problem 10. Describe all integers which are represented by forms a) x2 + y2; b) x2 − y2; c)∗ x2 + xy+ y2.

Proof. a) n = x2 + y2 if and only if in the factorization of n into primes, every prime divisor entering in n
in odd power, is equivalent to 1 modulo 4.

b) (u+ 1)2 − u2 = 2u+ 1. Hence, x2 − y2 represents all the odd numbers. Also (u+ 1)2 − (u− 1)2 = 4u.
We see that x2 − y2 represents all the integers equivalent to 0, 1, and 3 modulo 4. Analyzing this form

modulo 4, we see that residue 2 cannot be represented .
c) Let us fix n. Analogously the proof of Problem 6, we can show that the equation x2 + xy + y2 = n

has integer solutions if and only if it has rational solutions. In rational numbers, x2 + xy + y2 is linearly
equivalent to x2 + 3y2 (x2 + xy+ y2 = (x+ y

2 )
2 + 3(y2 )

2). We show here (read the section about the Hilbert
symbol!), that x2 + 3y2 represents n in rational numbers if and only if every prime entering in n in odd
power is equivalent to 0 or 1 modulo 3.

Indeed, x2 + 3y2 = n has solutions in Q if and only if x2
1 + 3y21 − nz2 = 0 has solutions in Z with

nonzero z. By the Minkowski-Hasse theorem, this equation has solutions if and only if the Hilbert symbol
(n,−3)p equals 1 for every prime p. Let us find it.

Consider p > 3. Let n = pα ·u, 3 = p0 · (−3). Using the formula for the Hilbert symbol and the quadratic
reciprocity law (Serre, Chapter 1, § 3, Theorem 6) we get that

(n,−3)p =

(−3

p

)α

=

(−1

p

)α (

3

p

)α

=

(−1

p

)α

·
(

(−1)
p−1

2

(p

3

))α

,

so it always equals 1 for even α, and for odd α it equals
(p

3

)

, i.e., equals 1 if and only if p has residue 1

modulo 3. So, if the equation
x2
1 + 3y21 − nz2 = 0

has solutions modulo p, for p of the form 3k + 2, then p enters in pair degree into the decomposition of n
into primes.

The case p = 2 is let to the reader.
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Consider p = 3. Let n = 3α · u, here β = 1, v = −1. We have:

(n,−3)3 = (−1)α
(u

3

)

(−1

3

)α

=
(u

3

)

.

This expression equals 1 if and only if u has residue 1 modulo 3. But we have already checked that all the
prime divisors of the form 3k + 2 enter in even degree, so this condition gives nothing new.

Definition 1. Two quadratic forms are called equivalent if they represent the same set of numbers.

Problem 11. Prove that the quadratic forms

f(x, y), f(x− y, y), f(x, y − x), f(−x, y), f(x,−y) (3)

are equivalent.

Proof. If m is represented by the form f(x, y) for x = x0, y = y0, then m can be represented by the form
f(x− y, y) for x = x0 + y0, y = y0, by the form f(x, y− x) for x = x0, y = y0 + x0, by the form f(−x, y) for
x = −x0, y = y0, by the form f(x,−y) for x = x0, y = −y0. Hence, every integer which can be represented
by the form f(x, y) can also be represented by any other form from the list (3). One can analogously prove
that every integer represented by one of these forms can be represented also by any other form from the
list (3). We obtain that all the forms (3) are equivalent.

Problem 12. a) Prove that the forms x2 + y2 and x2 + xy + y2 are not equivalent.
b) Prove that the form 4x2 − 6xy + 5y2 is not equivalent to any form ax2 + by2 with integer a and b.

Proof. a) The form x2 + y2 represents 2, while x2 + xy + y2 not. Hence, they are not equivalent.
b) The form 4x2 − 6xy + 5y2 has a unique well, and the values around it equal 3, 4, and 5. Hence, 3, 4,

and 5 are three minimal values of the form 4x2 − 6xy + 5y2.
Let a, b > 0. Then three minimal values of the form ax2 + by2 can be the following sets of numbers:

{a, b, a+ b}, {a, 2a, b}, {a, b, 2b}, {a, 2a, 4a}, {b, 2b, 4b}. (4)

Clearly, we cannot find a and b to represent the set {3, 4, 5} in any of forms (4).
We conclude that there do not exist nonnegative integers a and b such that the form 4x2 − 6xy + 5y2 is

equivalent to ax2 + by2.

Problem 13. Provide an example of a non-negative definite form which is not positive definite.

Proof. Example: f(x, y) = x2.

Extended arithmetics: p-adic numbers

Problem 14. Let m and n be square-free integers. Assume that the equation

z2 −mx2 − ny2 = 0 (5)

has a nontrivial rational solution. Prove that
a) either m or n is positive,
b) m is a quadratic residue modulo n,
c) n is a quadratic residue modulo m.

Proof. We fix a nonzero rational solution (x0, y0, z0) of equation (5). Let us assume that x0, y0, z0 have no
common divisor greater than 1.

a) If m,n 6 0, then x2
0 −my20 − nz20 > 0, and the equality can be obtained only for x0 = y0 = z0 = 0.

We get a contradiction.
b) It is enough to show that for every prime divisor p of m, the integer n is a quadratic residue modulo p.

Fix a prime divisor p of m. If n
... p, then there is nothing to prove. Now let n 6 ... p. Consider two cases:

y0
... p and y0 6 ... p.
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First let y0
... p. Then x0 and z0 are also divisible by p, which contradicts our assumption that

gcd(x0, y0, z0) = 1.

Hence, y0 6 ... p. Then the following equivalence is true modulo p:

n ≡ (z/y)2 (mod p),

which ends the proof of b).
The proof of c) is analogous.

Problem 15. Reduce Metatheorem for the equations in two variables to the case of equations of the form (5).

Proof. Every quadratic equation has form

f(X1, X2) = f2(X1, X2) + f1(X1, X2) + f0 = 0,

where f2 is a homogeneous polynomial of degree 2, f1 of degree 1, f0 is a constant.
First let us prove a general statement: either both

f(X1, X2) = 0 and f(X1 + cX2 + t,X2) = 0

have rational solutions, or have no rational solutions for all the pairs of rational numbers (c, t). We leave the
proof of this fact as an exercise.

Clearly, the following changes of variables

f(X1, X2) → f(X1 + cX2, X2) (6)

change f1 and f2 independently and preserve f0.
Let us present f2 in the form

c1X
2
1 + c12X1X2 + c2X

2
2 ,

where c1, c2, and c12 are parameters.
If f2 6= 0, then we can perform several changes of the form (6) and assume that c1 6= 0.
Consider the function

f(X1 −
c12
2c1

X2, X2). (7)

It is easy to see that (7) has form
c1X

2
1 + c′2X

2
2

for some rational number c′2. Hence, we may assume that

f2(X1, X2) = c1X
2
1 + c2X

2
2

for some rational numbers c1, c2. If c2 = 0, but c1 6= 0, then the equation f = 0 can be written as

c1X
2
1 = −rX2 − f0

which can be easily solved. So from now on we assume that c1 6= 0. Analogously, we may assume that c2 6= 0.
The linear part f1(X1, X2) has the form r1X1 + r2X2. Consider the following change of variables:

f(X1, X2) → f

(

X1 −
r1
2c1

, X2 −
r2
2c2

)

.

If now we expand the function f(X1 − r1
2c1

, X2 − r2
2c2

), we obtain that its linear part f1 equals 0. Now the
equation f = 0 takes the form

c1X
2
1 + c2X

2
2 + f0 = 0.

This equation is equivalent to a homogeneous equation

z2 +
c2
c1
y2 +

f0
c1

z2 = 0.

This ends the proof.
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Problem 16. Let f be a polynomial with integer coefficients. Prove that the equation f = 0 has a solution
in Zp if and only if it has a solution modulo pn for every positive integer n.

Proof. Let x1, . . . , xn, . . . be the solution of the equation f = 0 in Zp. Then for every n the residue of xn

modulo pn is a solution of the equivalence modulo pn. In particular, f ≡ 0 has a solution modulo pn for
every positive integer n.

Now prove the other implication. Suppose that the equation f ≡ 0 has a solution modulo pm for every
positive integer m. For every m, we denote by Sm the set of solutions of the equation f ≡ 0 modulo pm. By
our assumption, Sm is non-empty for every m > 0.

Since every residue modulo pm+1 can be treated as a residue modulo pm, we have a projection Sm+1 →
Sm. Let us denote by S∞

m the intersection of images of Sm+k for all k > 0. Since Sm+k 6= 0, the set S∞
m 6= 0.

For every sm ∈ S∞
m there exists a sm+1 ∈ S∞

m+1 such that sm is the image of sm+1 with respect to the
projection defined above. Proceeding in such a way, we can construct an infinite chain

s1, . . . , sm, . . . , (8)

where sm is a set containing n residues modulo pm and sm is the projection of sm+1 to the residues modulo
pm. The sequence (8) defines the unique set of n p-adic integers x1, . . . , xn, having the prescribed sets of
residues s1, . . . , sm, . . . modulo p, . . . , pm, . . ..

The numbers x1, . . . , xn are the solutions of the equation f = 0.

Problem 17. When is a p-adic number in the form (2) equal to 0?

Proof. The answer follows from the definition: If a−k + . . .+ a−k+ip
i ≡ 0 (mod pi+1) ∀i.

Problem 18. Prove that the product of two nonzero p-adic numbers is also nonzero.

Proof. Consider two non-zero p-adic numbers a, b. We assume without loss of generality that a, b ∈ Zp and
a, b 6≡ 0(mod p). But it means that ab 6≡ 0(mod p), hence, ab 6= 0.

Problem 19. Prove that Q ⊂ Qp for any prime p (i.e., prove that for every pair of nonzero integers m and
n there exists a p-adic number x such that nx = m).

Proof. Without loss of generality we may assume that m,n are coprime with p. But now the statement of
Problem 16 follows from Problem 20.

Problem 20. Prove that −1 is a square in Qp if and only if p ≡ 1 (mod 4).

Proof. It follows from Problem 21.

Problem 21. Find a description of all perfect squares in Qp.

Proof. We consider two cases p = 2 and p 6= 2 separately.
First consider p = 2. Every 2-adic number x can be represented as 2n(2m + 1), where n is an integer,

and m is an integer 2-adic number. We have x2 = 22n(1 + 8m(m+1)
2 ). Let m′ = m(m+1)

2 . Then

x2 = 22n(1 + 8m′), (9)

where m′ is a 2-adic integer.
Let us prove that every 2-adic integer of the form (9) is a perfect square in 2-adic numbers. It is sufficient

to show that every 2-adic integer m′ can be represented in the form m(m+1)
2 .

By Problem 16, is is enough to show that the equivalence x(x + 1) ≡ 2m′ has solutions in Z for every
i ∈ Z>0. We will prove this by induction.

Base i = 1 is true.
The step of the induction: i → i + 1. Let mi ∈ Z be a solution of the equation x(x + 1) ≡ 2m′(mod 2i).

There are two possibilities:
1) mi(mi + 1) ≡ 2m′ (mod 2i+1),
2) mi(mi + 1) ≡ 2m′ + 2i (mod 2i+1).
In Case 1), mi is also the solution of the equation x(x+ 1) ≡ 2m′ (mod 2i+1). In Case 2), mi + 2i is the

solution of the equation x(x + 1) ≡ 2m′ (mod 2i+1).
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Now let p 6= 2, i.e., p is an odd prime. Every p-adic number x can be represented in the form pnm, where
n is an integer and m is a p-adic integer which is not divisible by p. We have x2 = p2nm2. Let m′ = m2.
Then

x2 = p2nm′, (10)

where m′ is a p-adic integer such that its residue modulo p is a nonzero quadratic residue.
Let us prove that every p-adic number of the form (9) is a perfect square in p-adic numbers. It is enough

to show that every p-adic integer m′ such that
3) m′ is not divisible by p,
4) the residue of m′ modulo p is a nonzero quadratic residue,

can be represented in the form m2.
Using Problem 16, it is enough to prove that the equation x2 ≡ m′ (mod pi) has solutions in Z for every

i ∈ Z>0. We prove this statement by induction.
Base i = 1 is fulfilled since the residue of m′ modulo p is a quadratic residue.
Step: i → i+ 1. Let mi ∈ Z be the solution of the equation x2 ≡ m′ (mod pi). Then

m2
i+1 ≡ m′ + rpi (mod pi+1),

for some r ∈ Z. Since m′ is not divisible by p and p 6= 2, there exists a r′ ∈ Z such that 2mir
′ ≡ r (mod pi+1).

Let mi+1 := mi − r′pi. Then m2
i+1 ≡ m′ (mod pi+1), which ends the proof of the induction step.

Problem 22. Prove that for any nonzero 3-adic number m there exists a 3-adic number x such that m is
equal to one of the numbers x2, 2x2, 3x2, or 6x2.

Proof. Note that for every p, any p-adic number can be represented in the form pi ·a ·y, where a is an integer
from 1 to p− 1, pi is a power of p, and y is a p-adic integer, equivalent to 1 modulo p (by Problem 21, it is a
perfect square). In our case p = 3, and we obtain that, depending on parity of i, pi is either a perfect square
or 3 times a perfect square, a ∈ {1, 2}, and y is a perfect square. Clearly, their product has the required
form.

Problem 23. Let p be an odd prime, and let x1, . . . , x5 be nonzero p-adic numbers. Prove that there exist
indices i and j with 1 6 i < j 6 5 such that xi/xj is a perfect square in Qp.

Proof. As in the proof of the previous problem, every p-adic number has the form pi · a · y. Divide the given
numbers into 2 groups: in the first group i is even and in the second odd. Now divide each group into two
smaller groups depending on whether a is a quadratic residue or not. By pigeonhole principle, since we have
5 numbers and 4 groups, there are two numbers in the same group. Their ratio has the form

pj · anew · y1
y2

,

where j is even, anew is a quadratic residue (since it is the ratio of either two quadratic residues or two
quadratic non-residues), and y1

y2

is a p-adic number starting with 1. So this ratio is a perfect square as a
product of three perfect squares.

Problem 24. Prove that for every odd prime p there exist p-adic numbers x1, . . . , xp−1 such that x2
1+ . . .+

x2
p−1 + 1 = 0.

Proof. By Problem 21, 1−p is a perfect square in p-adic numbers. Hence, −1 = 1+1 . . .+1 (p−2 ones)+1−p
is a sum of (p− 1) perfect squares in p-adic numbers.

Problem 25. Prove that the equation x2 + x+ 1 = 0 has exactly two solutions in Z7.

Proof. The solutions of the x2+x+1 = 0 can be found with the help of the standard formula x1,2 = −1±
√
−3

2 .

Since
√
−3 ∈ Z7 (see Problem 21), the equation x2 + x+ 1 = 0 has two distinct solutions in Z7.

Problem 26. Prove that the equation x2 + y2 = −1 has a p-adic solution for every odd prime p.
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Proof. First solution. It is enough to show that this equation can be solved modulo p. Indeed, x2 can take
(p + 1)/2 different values: zero and all the quadratic residues. Now write down the list of all the values of
−x2 − 1. If any of them has the form y2, we are done. But if no one of them has the form y2, then there are
at most (p− 1)/2 possible values for y2, a contradiction.

Second solution. It is enough to show that this equation can be solved modulo p. Every quadratic residue
can be represented as x2 + y2. If only quadratic residues can be represented in the form x2 + y2, then for
every i we show by induction that only quadratic residues can be represented in the form x2

1+ . . .+x2
i . But by

Problem 24 every residue modulo p can be represented in the form x2
1+ . . .+x2

p−1. Hence, x2+ y2 represents
also quadratic non-residues. It means that x2 + y2 represents all the elements of Z/p, in particular, −1.

Problem 27. Prove the Hasse–Minkowski principle for equations in one and two variables.

Proof. A) Equations in one variable. Any such equation has the form ax2 = b. It is enough to show that
if it has no solutions in Q, then either it has no solutions in R, or it has no solutions in Qp for some p. If
ax2 = b has no solutions in Q, then b/a is not a perfect square in Q, i.e., either b/a < 0, or there exists a
prime number p which enters in b/a in odd power. In the first case ax2 = b has no solutions in R, in the
second in Qp.

B) Equations in two variables. By Problem 15, every equation (of degree two!) in two variables in rational
numbers is equivalent to the equation ax2 + by2 = 1. We may assume that:

1) the coefficients a, b are square-free integers,
2) |a| 6 |b|.
It is enough to show that if the equation ax2 + by2 = 1 has a solution in Qp for every p and in R, then

it has solutions in Q. Let m(a, b) := |a|+ |b|. We prove this statement by induction on m(a, b).
Base m(a, b) = 2 can be verified directly.
Step: m → m+ 1. Let a, b be some integers verifying the conditions 1), 2) and such that
• m(a, b) = m+ 1
• the equation ax2 + by2 = 1 has solutions in p-adic numbers for every p and has a solution in R.
Consider two cases: |a| = |b| and |a| < |b|. If |a| = |b|, then the equation ax2 + by2 = 1 is equivalent to

the equation
−(b/a)y2 + az2 = 1. (11)

Moreover, the equation (11) has solutions in Q or R or Qp, if and only if the equation ax2 + by2 = 1 has
solutions in the same set. Since m(− b

a , a) < m(a, b) = m+1, the equation −(b/a)y2 + az2 = 1 has solutions
in Q by the induction assumption. Hence, the initial equation has solutions in Q.

Now let |a| < |b|. It follows from the condition • that a is a perfect square modulo b, i.e.,

a+ bb′ = t2,

where b′, t are some integers and b′ > 0. We assume without loss of generality that

|t| 6 |b|
2
.

The equation ax2 + by2 = 1 has solutions in Q or R or Qp if and only if the equation

ax2 + b′y2 = 1, b′ =
t2 − a

b

has solutions in the same set. We have |b′| 6 |b|
4 and m(a, b′) < m(a, b) = m + 1. Since m(a, b′) 6 m, the

equation ax2 + b′y2 = 1 has solutions in Q by the induction hypothesis. Hence, the initial equation also has
solutions in Q.

Problem 28. Prove the following properties of the Hilbert symbol:

1) (a, b)p = (b, a)p, 2) (a, c2)p = 1,

3) (a,−a)p = 1, (a, 1− a)p = 1, 4) (a, b)p = (a,−ab)p = (a, (1− a)b)p.
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Proof. 1) Obvious from the definition.
2) The equation z2 − ax2 − c2y2 = 0 has a nonzero solution z = c, x = 0, y = 1.
3) The equation z2 − ax2 + ay2 = 0 has a nonzero solution z = 0, x = y = 1.
The equation z2 − ax2 − (1− a)y2 = 0 has a nonzero solution x = y = z = 1.
4) Using Problem 29, one can deduce it from 3).

Problem 29. Let (a, b)p = 1. Show that (a′, b)p = (aa′, b)p for any a′.

Proof. Let b be a perfect square. Then (a, b)p = (aa′, b)p = 1.
Now suppose that b is not a perfect square. We need the following lemma.

Lemma 1. If
• b is not a perfect square,
• (a, b)p = 1 and (a′, b)p = 1,

then (aa′, b) = 1.

Finish the proof of Problem 29 using Lemma 1. If (a′, b)p = 1, then by Lemma 1 we have (aa′, b)p = 1.
If (aa′, b)p = 1, then by Lemma 1 (a′, b)p = (a2a′, b)p = 1. Hence, if one of the numbers (aa′, b)p and (a′, b)p
equals 1, then the second one either equals 1. Hence, they are equal.

Proof of Lemma 1. Let (x0, y0, z0) be a nonzero solution of the equation z20 − ax2
0 − by20 = 0. Since b is not

a perfect square in Qp, x0 6= 0. So we may assume that x0 = 1 and a = z20 − by20 . By the similar reasoning,
there exist z1, y1 such that a′ = z21 − by21 . Then

aa′ = (z0z1 − by0y1)
2 − b(z0y1 + z1y0)

2.

Hence, (aa′, b) = 1.

To write down an expression for the Hilbert symbol in a compact form, we will use the Legendre symbol
(

x

p

)

defined for any integer x and prime p. It equals to 1, −1, or 0 depending on whether x is a nonzero

quadratic residue, a quadratic non-residue, or zero.

Problem 30. Let p be an odd prime; let a = pαu, b = pβv, where α, β, u, v are integers such that u and v
are not divisible by p. Prove that

(a, b)p = (−1)αβ·ε(p)
(

u

p

)β (
v

p

)α

,

where ε(p) = p−1
2 .

Proof. The proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 3,
§ 1, Theorem 1.

Problem 31. Find an explicit formula for (a, b)2 for every nonzero integers a and b.

Proof. Let a = 2αu, b = 2βv, where α, β, u, v are integers such that u and v are odd. The Hilbert symbol
(a, b)2 is given by the formula

(−1)ε(u)ε(v)+αω(v)+βω(u),

where ε(u) = u−1
2 , and ω(u) = u2−1

8 . The proof of this fact can be found in the book “A course in arithmetic”
by J.-P. Serre, Chapter 3, § 1, Theorem 1.

Problem 32. Prove that (a, b)p(a, b
′)p = (a, bb′)p for every nonzero integers a, b, b′.

Proof. The proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 3,
§ 1, Theorem 2.

Problem 33. Prove that the equation ax2 + by2 = c in variables x and y (with parameters a, b, and c) has
a solution in p-adic numbers if and only if (c,−ab)p = (a, b)p.
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Proof. If the equation ax2 + by2 = c has a solution, then the equation

z2 − a

c
x2 − b

c
y2 = 0

also has a solution. By definition, this means that (a/c, b/c)p = 1. We can re-write it as follows.

1 = (a/c, b/c)p = (a, b)p(a, c)p(b, c)p(c, c)p = (a, b)p(ab, c)p(c,−1)p. (12)

So (a, b)p = (c,−ab)p.
Now let (a, b)p = (c,−ab)p and show that the equation ax2 + by2 = c has a non-zero solution. It follows

from (12) that (a/c, b/c)p = 1. Hence, the equation z2 − a
cx

2 − a
b y

2 = 0 has a solution. Let us denote by
(x0, y0, z0) one of its solutions. If z0 6= 0, then (x0

z0
, y0

z0
) is a solution of the equation ax2 + by2 = c.

We have solved the problem if z0 6= 0. Now we assume that z0 = 0. For any rx, ry consider the equation

a(tx0 + rx)
2 + b(ty0 + ry)

2 = c.

It is equivalent to the equation
(ar2x + br2y) + 2t(ax0ry + by0rx) = c. (13)

For a generic pair of rational numbers (rx, ry), we see that (ax0ry + by0rx) 6= 0 and t0 =
c−(ar2x+br2y)

2(ax0ry+by0rx)
is a

solution of the equation (13). Hence, the equation ax2 + by2 = c has infinitely many rational solutions.

Using the properties of the Hilbert symbol, solve the following problem.

Problem 34.
∗ Let us fix a homogeneous polynomial f = a1x

2
1 + a2x

2
2 + . . . + anx

2
n with n > 2, where

a1, . . . , an 6= 0. Set

d = a1a2 . . . an and ε =
∏

i<j

(ai, aj)p. (14)

Prove that the equation f = 0 has a nonzero p-adic solution if and only if one of the following conditions is
satisfied:

1) n = 2 and −d is a square in Qp;
2) n = 3 and (−1, d)p = ε;
3) n = 4 and d 6= α2, or d = α2 and ε = (−1,−1)p;
4) n > 5. (i.e., if f depends on 5 or more variables, then f = 0 has a nonzero solution in Qp for any p.)

Proof. The proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 4,
§ 2, Theorem 6.

Deduce the following problem from problem 34.

Problem 35. Fix a homogeneous polynomial f = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n, where a1, . . . , an 6= 0, and an

integer a 6= 0. Define d, ε by formula (14). Then the equation f = a has a p-adic solution if and only if one
of the following conditions is satisfied:

1) n = 1 and a/d is a square in Qp;
2) n = 2 and (a,−d)p = ε;
3) n = 3 and ad is not a perfect square in Qp, or ad is a perfect square and ε = (−1,−d)p;
4) n > 4. (i.e., if f depends on 4 or more variables, then the equation f = a has a nonzero solution in

Qp for any p.)

Proof. 1) a1x
2
1 = a ⇔ x2

1 = a
a1

. Obviously, it has solutions in p-adic numbers if and only if a
a1

is a perfect
square in Qp.

2) a1x
2
1 + a2x

2
2 = a. The condition (a,−d)p = ε is equivalent to (a,−a1a2)p = (a1, a2) which is just

Problem 33 for a = a1, b = a2, c = a.
3) We are solving the equation a1x

2
1 + a2x

2
2 + a3x

2
3 − a = 0. Obviously, it is equivalent to the equation

a1x
2
1 + a2x

2
2 + a3x

2
3 − ax2

4 = 0 because of transformation

(x1, x2, x3, x4) ! (
x1

x4

x2

x4

x3

x4
, 1),

10



which is solvable in p-adic numbers.
Now we prove that if there is a nontrivial solution with x4 = 0, then there exists a nontrivial solution

with x4 6= 0. Without loss of generality x1 6= 0. Let (C,D) be a solution of the equation C2−D2 = − a
a1

(for

example, C = 1−a/a1

2 , D = −1−a/a1

2 )).

Obviously, we can multiply our solution to C
x1 , and we get (C, x2, x3, 0). It is easy to check that

f(C, x2, x3, 0) = f(D, x2, x3, 1),

so we reduced this problem to Problem 34c.
First case: ad 6= −m2 in Qp. It is equivalent to d 6= m2.
Second case: ad = −m2.
We need: (a1, a2)p(a1, a3)p(a2, a3)p = (−1,−a1a2a3)p ⇔ (a1, a2)p(a1, a3)p(a2, a3)p(−a, d) = (−1,−1)p.
Obviously, if we have a problem like a = b ⇔ c = d where (a, b, c, d) from {1,−1}, then we need to prove

ac = bd, so we need

(−a, d)p = (−1,−d)p(−1,−1)p ⇔ (−a, d)p = (−1,−1)p(−1,−1)p(−1, d)p ⇔
⇔ (−a, d)p = (−1, d)p ⇔ (−1, d)p(−a, d)p = 1 ⇔ (a, d)p = 1 ⇔

⇔ (a, a)p(a,
d

a
)p = 1 ⇔ 1 · 1 = 1,

because d
a is a perfect square in Qp.

4) As in 3), we only need to solve the equation

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 − ax2

5 = 0.

But by Problem 34d this equation is always solvable.
Also, the proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 4,

§ 2, Corollary of Theorem 6.

Problem 36. Prove the Hasse–Minkowski principle.

Proof. The proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 4,
§ 3, Theorem 8.

Problem 37. Using problem 35 and the Hasse–Minkowski principle, show that an integer d is a sum of 3
squares in rational numbers if and only if the number d cannot be represented in the form 4a(8b− 1), i.e. if
−d is not a perfect square in Q2.

Proof. By the Hasse-Minkowski principle, we only need to consider whether the equation x2 + y2 + z2 = n
has a p-adic solution or not. We work in terms of Problem 35. a1 = a2 = a3 = 1, d = 1, ε = (1, 1)3p = (1, 1)p,
a = n. First, we prove that if p > 2, then it is solvable in p-adic numbers.

If n is not a −m2 then we are done. If n = −m2 then ε = (1, 1)p = [Problem30] = 1 = [Problem30] =
(−1,−1)p, so a solution exists.

It remains to consider the case p = 2. If n 6= −m2 then we are done. Now let n = −m2. If a solution
exists, then

ε = (1, 1)2 = (−1,−1)2,

which leads to a contradiction by Problem 31.

Problem 38. Fix an integer n. Prove that if there exist rational numbers x, y, and z such that x2+y2+z2 =
n, then there also exist integers x′, y′, and z′ such that (x′)2 + (y′)2 + (z′)2 = n. Deduce the Gauss theorem
from this statement.

Proof. Let rational numbers x, y, z be such that x2 + y2 + z2 = n. Denote by d the common denominator
of x, y, z. Choose a triple (x, y, z) with the minimal value of d. Let us assume that d > 1 (i.e., that one of
x, y, and z is not integer and that the equation x2 + y2 + z2 = n has no integer solutions). Let rx, ry, rz be
the integers closest to x, y, z, and let sx := x− rx, sy := y − ry , sz := z − rz . Then

|sx|, |sy|, |sz| 6
1

2
, s2x + s2y + s2z = n− (r2x + r2y + r2z)− 2(sxrx + syry + szrz). (15)
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Let

x′ = rx −
sx(n− r2x − r2y − r2z)

s2x + s2y + s2z
, y′ = ry −

sy(n− r2x − r2y − r2z)

s2x + s2y + s2z
, z′ = rz −

sz(n− r2x − r2y − r2z)

s2x + s2y + s2z
.

It follows from (15) that s2x + s2y + s2z = d′/d, and moreover 0 < d′ < d. It means that the least common
denominator of x′, y′, z′ divides d′, i.e., is less than d. Notice that x′2+ y′2+ z′2 = n. We get a contradiction.
Hence, d = 1, and the equation x2 + y2 + z2 = n has integer solutions.

By Problem 37, every positive integer N which does not have the form 4n(8m − 1) is a sum of three
squares of rational numbers. But we proved above that in this case N is also a sum of three squares of
integers.

Problem 39. Deduce the Legendre theorem from the Gauss theorem.

Proof. It follows from the Gauss theorem that every positive integer, equivalent to 1, 2, 3, 5, or 6 modulo 8,
can be represented as a sum of three (and, consequently, of four) perfect squares. It remains to show that
every integer which is equivalent to 0, 4, or 7 modulo 8, can be represented as a sum of 4 perfect squares.

If n can be represented as a sum of four squares, then 4n either. So it is enough to consider the case
n ≡ 7 mod 8.

Fix n, n ≡ 7 mod 8. Since n− 1 is equivalent to 6 modulo 8, by Gauss theorem n− 1 can be represented
as a sum of three squares. Hence, n can be represented as a sum of four squares.

Some properties of the Hilbert symbol (DE-2)

The goal of this section is to show that, for a pair of nonzero integers (a, b), the Hilbert symbol (a, b)p
equals 1 for almost all (=all except finite number) primes p. We deduce this statement from a more general
statement presented below.

Problem 40. a) Let f be a homogeneous polynomial of degree n, depending on k variables, where k > n.
Then the number of solutions of the equivalence f ≡ 0 (including 0-solution!) modulo p is divisible by p
(Hint: apply the little Fermat theorem and consider case p = 2).

b) Let f be a polynomial of degree n depending on k variables, where k > n. Then the number of solutions
of the equivalence f ≡ 0 modulo p is divisible by p.

Proof. Obviously, case b) is a generalization of case a). We prove here b). Consider a polynomial f(x1, . . . , xk)
of degree n. Consider the following sum:

∑

x1,...,xn

f(x1, . . . , xn)
p−1, (16)

where x1, . . . , xn run all the residues modulo p. Note that every element of the sum (16) equals 0 or 1
modulo p. The key idea is that the residue modulo p of the number of solutions of the equation f(x1, . . . , xk) ≡
0 equals (16) modulo p. But the degree of the polynomial f(x1, . . . , xk)

p−1 is (p− 1)n. Since we have k > n
variables, for every monomial of f(x1, . . . , xk)

p−1 there exists a variable entering in this monomial in degree
less than p− 1. But for such a monomial, the summation in (16) gives 0, because

∑

xi

xl
i ≡ 0 (mod p)

for all l < p − 1. Hence, the sum in (16) is equivalent to 0 (mod p), and the number of solutions of the
equation f(x1, . . . , xn) = 0 has residue 0 modulo p.

Problem 41. Deduce from the previous problem that for any integers a, b, c the equivalence ax2+by2+cz2 ≡
0 in variables x, y, z has a nonzero solution modulo p .

Proof. The polynomial ax2 + by2 + cz2 has degree 2 and depends on three variables. Hence, the number of
solutions of the equation ax2 + by2 + cz2 ≡ 0 has residue 0 modulo p. In particular, this means that the
equation ax2 + by2 + cz2 ≡ 0 has a nonzero solution.
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Problem 42. Deduce from the previous problem that, for a pair of nonzero integers (a, b) and an odd prime

p, (a, b)p = 1 if a, b 6 ... p. Explain why (a, b)p = 1 for all primes p except a finite number.

Proof. Let us fix p 6= 2 and relatively prime with a and b. We prove that (a, b)p = 1.
Let (x0, y0, z0) be a solution of the equation z2 − ax2 − by2 ≡ 0 (mod p) such that

(x0, y0, z0) 6≡ (0, 0, 0) (mod p)

(by Problem 41, such a solution exist). We assume without loss of generality that z0 6≡ 0(mod p). Then by
Problem 21 the value ax2

0+ by20 is a perfect square in p-adic numbers, hence, the equation z2−ax2− by2 = 0
has a nonzero solution in p-adic numbers, i.e., (a, b)p = 1.

Problem 43. Deduce from Problem 41 that the equation ax2 + by2 + cz2 + dv2 + ew2 = 0 in variables
x, y, z, v, w (a, b, c, d, e are parameters) has a nonzero solution in Qp for any odd prime p.

Proof. We may assume without loss of generality that a, b, c, d, e are integer and square-free (i.e., every
prime divisor enters in the 1st power). First we show that we may assume that no three of a, b, c, d, e have a
nontrivial common divisor. Indeed, let p be a prime divisor of three or more parameters.Then we multiply
the equation ax2+ by2+ cz2+dv2+ ew2 = 0 by p and factor out perfect squares, thus obtaining an equation
in which p divides at most 2 of the parameters a, b, c, d, e. Clearly, we may apply this procedure for all the
prime divisors of a, b, c, d, e. Finally we may assume that for each prime p, at least three numbers among
a, b, c, d, e are not divisible by p.

Fix a prime p. Without loss of generality a, b, c are not divisible by p.
If p is odd, then we use Problem 42: the equation

ax2 + by2 + cz2 = 0

(and, consequently, the equation ax2 + by2 + cz2 + dv2 + ew2 = 0) has a non-zero solution in Qp.
If p = 2, then one has to consider case-by-case all the residues of a, b, c, d, e modulo 8.

Problem 44. Prove that, for any pair of nonzero integers (a, b), we have
∏

p

(a, b)p = (a, b)−1,

where the product is taken over all primes p and

(a, b)−1 =

{

1, if the equation z2 − ax2 − by2 = 0 has a real solution,

−1 otherwise.
. (17)

Proof. Since the Hilbert symbol is multiplicative (Problem 32), is is enough to check (17) in the case when
a, b are prime numbers or −1.

Consider the case a = b = −1. Then (a, b)p = (−1,−1)p is not 1 only if p = 2. But in this case one can
directly verify that (−1,−1)2 = (−1,−1)−1 = −1.

The next case: a = −1, b is a prime number. Then (a, b)p = (−1, b)p is not 1 only if p = b or p = 2.
The direct check shows that (−1, p)p = (−1, p)2 for p 6= 2 and (−1, 2)2 = 1. It means that the left-hand side
of (17) equals the right-hand side of (17) and equals 1.

As a last problem of this list, we mention an “analogue” of the Chinese Remainder Theorem: it turns out
that one can construct a rational number with the prescribed values of the Hilbert symbol.

Problem 45. Fix a finite set of nonzero integers ai and for every prime p define the values εi,p = ±1. Show
that the system of equations

(ai, x)p = εi,p, ∀i, ∀p,
has a solution if and only if

a) almost all (=all except finite number) εi,p = 1,
b) for any prime p, there exists a nonzero p-adic number xp such that

(ai, xp) = εi,p.

Proof. The proof of this fact can be found in the book “A course in arithmetic” by J.-P. Serre, Chapter 3,
§ 2, Theorem 4.
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Two variables: maps of quadratic forms (DE-4)

In this section we study the equation

Em : ax2 + bxy + cy2 = m (18)

depending on integer variables x, y, where a, b, c, m are integer parameters.

Problem 46 (Superproblem). Prove that if the equation Em has a solution for some positive m, has a
solution for some negative m, has no non-trivial solutions for m = 0, then for every m either Em has no
solutions, or Em has infinitely many solutions.

Proof. It follows from the problem statement that f(x, y) = ax2 + bxy + cy2 is an indefinite quadratic form
which does not represent 0. Hence, the map of f splits into a positive domain and a negative domain by a
periodic river. Consequently, the map of f is periodic; it means that every value written on the map appears
infinitely many times.

Problem 47 (Superproblem). Is it true that if the equation Em has solutions for

m = ±1, ±2, ±3,

then in this case Em has solutions for any integer m?

Proof. We give a counterexample f(x, y) = x2 + xy − 18y2.

Problem 48 (Superproblem). Prove that if the equations E1, E2, E3, E5 have integer solutions, then the
equation Em has an integer solution for some m < 0.

Proof. Suppose the contrary. Then there are two cases: either f is positive definite or f is non-negative
definite. We consider these cases independently.

Let f be non-negative definite. Then f(x, y) = r(px+ qy)2 for some integers r, p, q. Since f represents 1,
we have r = 1. But then f does not represent 5.

Now let f be positive definite. Without loss of generality we assume that

f = px2 + qy2 + r(x − y)2

for some non-negative integers p, q, r (see Problem 60). The values p, q, r are either all integers or all
semi-integers. Without loss of generality we assume that p > q > r.

The minimal nonzero value of f is q + r. Since f represents 1, q + r = 1. Hence, either q = 1, r = 0, or
q = r = 1

2 . We consider both these cases.
In the first case q = 1, r = 0. Since f represents 2, either p = 1, or p = 2. In the first case f does not

represent 3, in the second case f does not represent 5.
In the second case q = r = 1

2 . Then for all positive p we have

f(x, y) > x2 − xy + y2.

Since f represents 2, f(x, y) = 2 for some integers x, y. In particular, x2 − xy + y2 6 2. This inequality is
held for the following pairs (x, y):

(0, 1), (1, 0), (1, 1).

Since f(0, 1) = 1, there are only two cases: f(1, 0) = 2, f(1, 1) = 2. Let us consider both these cases.
Let f(1, 0) = 2. Then p = 3

2 , f = y2 − xy + 2y2. In this case f does not represent 3.
Let f(1, 1) = 2. Then p = 3

2 , f = y2 − xy + 2y2. In this case f does not represent 3 neither.
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Drawing a map

Problem 49. Prove that, if {w1, w2} is a basis of Z2, then pairs

{w2, w1}, {w1 − w2, w2}, {w1 + w2, w2}, {−w1, w2} (19)

are also bases of Z2.

Proof. Analogous to the proof of Problem 11.

Problem 50. Show that, using transformations (19), it is possible to transform any basis to any other one.

Proof. Let {u, v} := {(a, b), (c, d)} be a basis of Z2. We show that by transformations (19) we may send every
basis {u, v} to the basis {(1, 0), (0, 1)}. Consider the quadratic form f(x, y) := x2 − xy+ y2. By Problem 60,
in some basis {u′, v′} which can be obtained from {u, v} via a series of transformations (19), the quadratic
form f will be equivalent to a quadratic form of the form

px2 + qy2 + r(x + y)2, (20)

2p = f(v′) + f(u′ + v′)− f(u′) > 0,

2q = f(u′) + f(u′ + v′)− f(v′) > 0,

2r = f(u′ + v′)− f(u′)− f(v′) > 0.

The least values of the quadratic form (20) are attained for (x, y) equal to

(0, 1), (1, 0), (1, 1), (21)

and the value on any other pair (x, y) is greater than at least one of these values. Since x2 − xy + y2 is
positive definite, the value (20) is greater than 1 on all the pairs besides the pairs of the list (21). Hence, the
value (20) on the pairs (21) is equal to 1. This implies one of the three statements below:

{u′, v′} = {(0, 1), (1, 0)}, {u′, v′} = {(0, 1), (1, 1)}, {u′, v′} = {(1, 0), (1, 1)}. (22)

Hence, the basis {u, v} is equivalent to one of the bases (22).

Problem 51. Show that a quadratic form can have the same representations in several different bases.

Proof. The quadratic form x2 − 2y2 is the same in bases {(3, 2), (4, 3)} and {(1, 0), (0, 1)}.

Problem 52. Find a quadratic form which has different representations in any two different bases of Z2.

Proof. Let f(x, y) := 2x2−xy+3y2, and let us show that for different bases, this form is written differently.
Suppose the converse: assume that there exist two different bases such that this quadratic form has the
same form in these bases. Let us reconstruct the map of this form step by step, starting from these bases,
synchronously. Consider the first moment when the reconstructed domains intersect. Their intersection is
either an edge or a vertex. Consider these cases independently.

If this intersection is a vertex, then the map of f is symmetric with respect to one of the edges incident
to this vertex. Hence, the only well of the form 2x2 − xy + 3y2 is also symmetric with respect to one of the
edges incident to it. But this is not true since the values around the well are 2, 3, and 4.

If this intersection is an edge, then the map of f does not change, if we interchange the vertices of the
edge. Hence, the vertices of this edge are wells, in particular, the form 2x2 − xy+ 3y2 has two wells. We get
a contradiction.

We proved that the quadratic form 2x2 − xy + 3y2 is different in different bases.

Exercise 1. Write down all the extensions of a basis {w1, w2}. Write down all the specializations of a
superbasis {±w1, ±w2, ±(w1 + w2)}.

Exercise 2. Draw (oriented) maps of the following quadratic forms:

f1 = 3x2 + 9xy + 7y2, f2 = x2 − 2y2, f3 = x2 − 3y2.

In two problems below, the values A, B, C, D, and h are related to the following picture.
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Problem 53. Show that A, B, C, D, and h satisfy

C = A+ B + h, D = A+B − h.

Proof. The problem statement is equivalent to the following identity for quadratic forms:

f(x+ y) + f(x− y) = 2(f(x) + f(y)).

Problem 54. Assume that A, B, C are positive and the edge h goes from C to D. Show that in this case
D is also positive and that the arrows on two other edges which are incident to Q go out of Q.

Proof. Since D,h > 0, C = D+ 2h > 0. The values in the regions incident to the edges incident to D equal

4A+ 2h+B, 4B + 2h+A (> A,B). (23)

Hence, two remaining arrows go out of D.

Problem 55. Show that the graph determined by the points-superbases and edges-bases is a tree, i.e., it
has no cycles.

Proof. Consider the quadratic form f(x, y) = x2 + xy+ y2. Its map has a unique well Q, and by Problem 54
all the arrows of this map go out of Q. If there were a cycle on this map, then it would be impossible that all
the arrows go out of Q. Hence, the map of the quadratic form f does not contain cycles. But the underlying
graph does not depend on the quadratic form, so for every f its map is a tree.

Problem 56. Let Q be a unique well of a positive definite quadratic form f , and p, q, r be integers written
in the regions adjacent to Q. Show that the number in any other region of a map related to f is strictly
greater than max(p, q, r).

Proof. We fix a region A such that
a) A is not adjacent to a well,
b) the value of f on A is minimal among all the regions satisfying a).

We are going to prove that f(A) > p, q, r. It will end the proof. Let us find the path of the smallest length
W from A to the well Q. Since W is the shortest, its last arrow bottoms at A. By the definition of the well
all the arrows incident to it go out of it. This together with Problem 54 implies that all the arrows of W are
oriented from Q. Hence, the last edge of W is oriented to A. So it follows from the conditions a) and b) that
W contains only one edge. The statement of the problem for the regions connected with a well by an edge
can be verified directly (see formula (23)).

Problem 57. Prove that every positive definite form has a well.

Proof. Choose a vertex Q of the map, for which the sum of values of the neighbor regions is minimal. This
vertex will be a well (cf. also Problem 53).

Problem 58. a) Prove that a positive definite form has not more than two wells.
b) Find a positive definite form with two wells.
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Proof. b) The form x2 + y2 is positive definite and has two wells.
a) Let Q be a well, and p > q > r be the values written in the regions around it. There are two cases:

q + r > p or q + r = p. Consider these cases independently.
Let q + r > p. Then all the three arrows incident to Q go out of Q. Fix a vertex Q′ and assume that it

is a well. Let W be the shortest path joining Q and Q′. It follows from the proof of Problem 54 that all the
edges of W are directed from Q to Q′. Hence, Q′ is not a well.

Now let q+ r = p. Then the second vertex of the edge E, separating the value q from the value r, is also
a well. We denote it by Q′. The collections of values around Q and around Q′ coincide. Assume that there
exists one more well Q′′, and let W be the shortest path, joining Q′′ either with Q or with Q′. Then W does
not pass through the second one. Without loss of generality we assume that W joins Q with Q′′. Then all
the edges of W are directed from Q, hence, Q′′ is not a well.

Problem 59. Provide an algorithm which solves the equation ax2+bxy+cy2 = m (a, b, c, m are parameters,
x, y, z are variables), under the assumption that ax2 + bxy + cz2 is positive definite.

Proof. After an appropriate change of variables we may assume that f = px2 + q(x − y)2 + ry2 for some
positive values p, q, r (see Problem 60). If f(x, y) = n has integer solutions, then

px2
6 n, ry2 6 n. (24)

The number of pairs of integers (x, y) for which x, y satisfy (24) is finite. If we check them all, we will detect
whether the equation f(x, y) = n has solutions or not.

Problem 60 (Classification of positive definite quadratic forms).

a) Show that any positive definite quadratic form is equivalent to the form

(p+ q)x2 + 2qxy + (q + r)y2 (25)

for some non-negative numbers p, q, r.
b) Show that the quadratic forms corresponding to

(p1, q1, r1) and (p2, q2, r2)

are equivalent if and only if these triples coincide as multisets.
c) Find out which triples (p, q, r) determine an integer quadratic form.
d) Find out which triples (p, q, r) determine a positive definite quadratic form.

Proof. Let Q be a well of f , and m, n, k be the values around this well. Let

p =
m+ n− k

2
, q =

m+ k − n

2
, r =

k + n−m

2
.

Then f is equivalent to the form
px2 + qy2 + r(x − y)2 = (25).

In the case b) there is a counterexample in our notation x2 +3y2 и x2 + xy+ y2. In the statement of the
problem, “equivalent” must be replaced by “linearly equivalent”.

The answer of c): when either p, q, r are integers, or p− 1
2 , q − 1

2 , r − 1
2 are integers.

The answer of d): the form f is positive definite, if p, q, r > 0 and at least two of numbers p, q, r are
nonzero.
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