
Diophantine equations of second degree
In this project we study some properties of Diophantine equations of second degree. Those

who advance in the project will develop a theory allowing one to solve a large (and interesting)
class of problems. Some exciting examples are presented below.

We start with second degree equations in rational numbers. We will elaborate an algorithm
which effectively determines whether an equation has a solution. As an application of this theory,
we prove the following theorem by Carl Friedrich Gauss.

Theorem (Gauss). A positive integer number d can be written as a sum of three squares if and
only if d cannot be represented in the form 4n(8m− 1).

After the semifinal, we will focus on integral solutions of degree 2 equations in two variables.
To investigate the solutions of these equations, we will introduce the maps of quadratic forms. We
will also prove the following statement.

Theorem (J. Conway). There exists a unique1 homogeneous polynomial f(x, y, z) of degree 2
such that all the equations f(x, y, z) = m with m = 1, . . . , 30 admit integral solutions, but any
equation of the form f(x, y, z) = m with m < 0 has no integral solutions.

Introductory problems

In this subsection we collect several easy problems on (integral) quadratic forms. These problems
may be solved using a general algorithm of solution of such equations; we believe that some
participants will construct such an algorithm. Nevertheless, all these introductory problems may
be solved in a direct way.

Notice that there is no such algorithm for Diophantine equations of an arbitrary degree; the
fact that it cannot exist was proved by Yu. Matiyasevich in 1970; by proving this fact he has
solved the 10th Hilbert problem.

See Problems 1–9.
If you are stuck on some of these problems, you may proceed to the next sections and return

to these problem later, after obtaining some technical background.

The quadratic forms

Definition 1. A quadratic form is a homogeneous polynomial of degree 2. Here are two examples:
2x2 + 2xy − y2 and x2 − xz + y2 − 2z2.

For every positive integer d, we denote by Zd the set of d-tuples of integers. E.g., the set of
pairs of integers is denoted by Z2. Any quadratic form in two variables x and y determines a
function on Z2 mapping a pair (x, y) to the number f(x, y). Hereafter we will frequently denote
a pair (x, y) ∈ Z2 by one letter (say, v) and write f(v) for f(x, y).

Definition 2. We say that a quadratic form f represents an integer m if there exists a pair v ∈ Z2

with v 6= (0, 0) and f(v) = n. In other words, f represents m if the equation f(x, y) = n has a
nonzero integer solution (thus not any quadratic form represents 0).

See Problems 10–11.

Definition 3. We say that two quadratic forms are equivalent if each number represented by one
of these forms can also be represented by the other one.

1Formally, this statement is wrong; this polynomial is unique up to some equivalence which will be described

later.
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See Problem 12.
It appears that some quadratic forms are easier to deal with than some other ones. One of our

aims is the following: Given a quadratic form f , we wish to find some convenient form equivalent
to it (e.g., a form like ax2 + by2). For that, we need to work out some necessary and sufficient
conditions on the two quadratic forms to be equivalent. In particular, we will find some explicitly
computable invariants of quadratic forms.

Definition 4. We say that a quadratic form f is
a) positive definite if f(v) > 0 for all v 6= 0,
b) non-negative definite if f(v) ≥ 0 for all v ∈ Z2,
c) indefinite if f(u) > 0 for some u ∈ Z2 and f(v) < 0 for some v ∈ Z2.

See Problem 13.

Extended arithmetics: p-adic numbers

The main goal of this section is to impart some sense to the following Metatheorem.

Theorem (Metatheorem). A quadratic equation has a solution in rational numbers if and only
if there are no obstacles modulo any prime p.

Using this Metatheorem, one can prove, for instance, the Gauss theorem and the following
theorem by Legendre.

Theorem (Legendre). Every positive integer is a sum of four squares of integers.

In our project we split the proof of Metatheorem (as well as of theorems by Gauss and Legendre)
into several problems. Any such problem can be solved independently. To start with, we need to
impart a formal sense to our Metatheorem (in the previous formulation, it is ambiguous; moreover,
it remains wrong after any easy attempt to formalize it). Let us present some example.

Definition 5. We say that m is a quadratic residue modulo n if there exists an integer t such
that m ≡ t2 (mod n).

See Problems 14–15.
In the case gcd(m,n) = 1, the conditions a)–c) of Problem 14 imply that the equation

ax2 + by2 = c

has a rational solution. On the other hand, in the case gcd(m,n) 6= 1 one needs to introduce
additional conditions on m and n which are related to prime divisors of gcd(m,n). If one writes
them down directly, these conditions would look a bit long, although simple.

An elegant (and short) way to present such conditions is based on the notion of p-adic numbers.
We follow this approach.

For any prime p, a p-adic integer is defined as any formal sum of the form

a0 + a1p+ . . .+ anp
n + . . . (ai ∈ Z) (1)

where the number of summands may be infinite. Two p-adic integers are assumed to be equal if
they coincide modulo pn for any n. For example,

1 = (p+ 1)− (p+ 1)p+ (p+ 1)p2 − (p+ 1)p3 + . . . .

The set of p-adic integers is denoted by Zp.
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One may add, subtract, and multiply p-adic integers in an obvious way. Therefore, given an
equation f = 0 with integer coefficients, one may consider its solutions in Zp. The following
problem provides a connection between the sets of solutions of f = 0 in integers and in p-adic
integers.

See Problem 16.
The notion of a p-adic integer is an extension of a notion of an integer. A similar extension

exists for the rational numbers. Namely, for any prime p we define a p-adic number (or a p-adic

rational) as a formal expression of the form

a
−kp

−k + a
−k+1p

−k+1 + . . .+ anp
n + . . . (k ∈ Z, ai ∈ Z); (2)

the equality of two p-adic numbers is defined as above. The set of all p-adic numbers is denoted
by Qp. Obviously, any p-adic integer can be represented in the form (2) with a

−k = ... = a
−1 = 0

(or with k ≤ 0).
In order to get acquainted with the notion of p-adic numbers, it is useful to solve the following

problems.
See Problems 17–26.
Now we are ready to present a formal version of Metatheorem.

Theorem (the Hasse–Minkowski principle). A quadratic equation f = 0 has a rational solution
if and only if it simultaneously has solutions

• in real numbers,
• in p-adic numbers for every prime p.

See Problem 27.
The Hasse–Minkowski principle reduces solving an equation in rational numbers to solving the

same equation in p-adic numbers. The advantage is that equations in p-adic numbers are much
easier to solve. To show this, we first describe an algorithm which allows one to check whether an
equation in two variables has a rational solution. Let us first deal with an equation of the form

z2 − ax2 − by2 = 0. (3)

Definition 6. Consider a prime p and a pair of integers (a, b). Let us define the Hilbert symbol

(a, b)p of a pair (a, b) with respect to p as follows: If the equation (3) has a nonzero solution in
p-adic integers, then we set (a, b)p = 1; otherwise we set (a, b)p = −1.

Thus, for finding the solutions of (3) it is helpful to learn how to find (a, b)p.
See Problems 28–29.
To write down an expression for the Hilbert symbol in a compact form, we will use the Legendre

symbol

(

x

p

)

defined for any integer x and prime p. It equals to 1, −1, or 0 depending on whether

x is a nonzero quadratic residue, a quadratic non-residue, or zero. For an odd prime p, one may
calculate it using the formula

(

x

p

)

= x
p−1

2 (mod p)

See Problems 30–39.
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Two variables: maps of quadratic forms

In this section of the project we develop a technique which allows us to solve the equation

Em : ax2 + bxy + cy2 = m (4)

effectively, here x and y are integer variables and a, b, c, m are integer parameters. To do this,
we assign a map to any quadratic form in two variables and show how to read properties of the
form out of this map. We believe that using this approach the participants will be able to solve
the following (super)problems. By a solution in this section we always mean a nonzero integer
solution if not mentioned otherwise.

Problem 46 (Superproblem). Assume that the equation Em has a solution for some positive m,
for some negative m and has no solutions for m = 0. Prove that in this case either Em has no
solutions, or Em has infinitely many solutions for any m.

Problem 47 (Superproblem). Is it true that if the equation Em has solutions for

m = ±1, ±2, ±3,

then in this case Em has solutions for any integer m?

Problem 48 (Superproblem). Assume that the equations E1, E2, E3, E5 have solutions. Show
that in this case the equation Em has solutions for some m < 0.

Now we treat two examples to show how the map of a quadratic form may help to solve
equations.

Examples of maps

The goal of this subsection is to show that it might be interesting to consider maps of quadratic
forms. Given two polynomials

2x2 + 2xy − y2 = 1 and x2 − xy + y2 = 2, (5)

we assign the following pictures to them, they are called maps:

From these maps we see that equations (5) have no integer solutions.
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Drawing a map 2

To find something common in a variety of something very different it was a good idea (from time
to time) to consider all this different (some)things simultaneously and providing this “all” by some
additional structure. Following this approach, we consider all forms which are linearly equivalent
(see definition below) to a form f and provide this set with an oriented graph structure (we put
points of quadratic forms on the plane and connect them by edges in some way). To do this we
need a notion of basis/superbasis of Z2.

Definition 7. A basis of Z2 is a pair w1, w2 ∈ Z2 such that for any v ∈ Z2 there exist m,n ∈ Z,
for which

v = mw1 + nw2.

Before semifinal, we had the notion of equivalent forms. Unfortunately, if we work with maps
of quadratic forms, it is more natural to use the following notion.

Definition 8. Two forms f1, f2 are called linearly equivalent, if ∃ a, b, c, d, such that ad− bc = 1
and

f1(x, y) = f2(ax+ by, cx+ dy).

See/solve Problems 49–52.

Definition 9. A superbasis of Z2 is a collection {±w1,±w2,±(w1+w2)}, where {w1, w2} is a basis
of Z2. We say that a basis {w1, w2} is a specialization of a superbasis {±w1, ±w2, ±(w1 + w2)}.
We say that a superbasis {±w1, ±w2, ±(w1 + w2)} is an extension of a basis {w1, w2}.

Example 1. Write down all the extensions of a given basis {w1, w2}. Write down all the special-
izations of a given superbasis {±w1,±w2,±(w1 + w2)}.

Now we are able to describe the map f . We start from a part of this map which does not
depend on f at all:

(1) to any superbasis {±w1, ±w2, ±(w1 +w2)}, we assign a point on the plane (the vertex of
the graph),

(2) to any basis {w1, w2}, we assign a segment on the plane (the edge of the graph), which
connects

{±w1, ±w2, ±(w1 + w2)} and {±w1, ±w2, ±(w1 − w2)}

(we assign the same edge to {w1, w2}, {−w1, w2}, {w1,−w2}, and {−w1,−w2});
(3) to any w ∈ Z2, we assign the region on the plane such that its border consists of edges

corresponding to bases containing w (we assign the same region to w and −w).
It turns out that it is possible to draw the following picture without self-intersections on the

plane.

(6)

2If you wish to see a much shorter way to draw a map of a form you could go to the appendix of this section.

Try to prove why a map defined in this way satisfies the desired properties.
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Note that (6) does not depend on f . Now we will mark the graph with integers depending
on f . Integers will be assigned to every region and to every edge of (6) in such a way that it
will be possible to restore the class of f up to linear equivalence in the unique way. We use the
following rules.

(1) If a region corresponds to w ∈ Z2, then f(w) will be assigned to it.
(2) If an edge I corresponds to a basis {w1, w2}, then we assign to it the positive integer

|f(w1 + w2)− f(w1)− f(w2)|.

Also, we make I directed: if f(w1 + w2) > f(w1 − w2), then edge I starts at vertex-superbasis

{±w1, ±w2, ±(w1 − w2)}

and ends in
{±w1, ±w2, ±(w1 + w2)};

if f(w1+w2) < f(w1−w2), then otherwise. If f(w1+w2) = f(w1−w2), then we do not determine
the direction of I (and usually omit 0 at I).

The resulting picture will be called the oriented map of a quadratic form f . If we omit
numbers attached to the edges in this picture, then it will be called the map of a quadratic form.
For example, the maps of the forms 2x2 + 2xy − y2 and x2 − xy + y2 are presented on page 4.

Example 2. Draw the (oriented) maps for the quadratic forms

f1 = 3x2 + 9xy + 7y2, f2 = x2 − 2y2, f3 = x2 − 3y2.

In two following problems, the integers A,B,C,D, h are related to the picture

See/solve Problems 53–55.

For positive definite quadratic forms, the following definition plays a key role.

Definition 10. A well is a vertex Q of the oriented map of a quadratic form such that all the
edges which are incident to Q go out of Q.

See/solve Problems 56–60.
We want to give you an advice:
1) The ideas of proofs of Superproblems 1, 2, and even of every equation of type (4), is very

close to Problems 59, 60.
2) In real mathematical life, no one (except yourself) would give you a sequence of (relatively

simple) exercises which lead to a proof of any mathematical Problem. You will be very lucky
if you learn (most probably, occasionally) a significant piece of the desired methods and ideas
somewhere.

3) The goal of this conference is to let you know something about real mathematical life.
If you did not guess, we end up with problems helping you to solve Superproblems 1, 2, 3

and determine when equations (4) have solutions. To simplify your life, we have prepared several
pictures which can help you to solve or to guess something.
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A quick way to describe the map of a quadratic form

Algorithm f → Γf : We consider an infinite tree (a connected graph without cycles) on the
plane such that every its vertex is incident to exactly 3 edges. A part of such a tree is presented
below

. (7)

We take any vertex of this graph and write integers f(1, 0), f(0, 1), and f(1, 1) on three regions
which meet at this vertex.

. (8)

The values at all the other regions are determined by the following rule

. (9)
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Rule 1: For a given edge, if 3 values which are adjacent to it (see Figure (9)) are already
known, then the fourth one is determined by the formula 2(A+B) = C +D.

It is easy to see that Rule 1 determines the map Γf . Now we need to construct the oriented

map ~Γf . We use the following rules (see Figure (9)):
Rule 2: We write |2(A+B)− C| = |2(A+ B)−D| at the edge h.
Rule 3: If C < D, then the edge h is replaced by an arrow from C to D; if C < D then h is

replaced by an arrow from D to C; if C = D then the edge h is unoriented.

Some properties of Γf :

1) the points of Γf correspond to quadratic forms which are linearly equivalent to f ;
2) the regions Γf are in one-to-one correspondence with the nonzero rational numbers m

n
;

3) if the region corresponds to a reduced fraction m
n
, then integer f(m,n) is written in it;

4) two quadratic forms f and g are linearly equivalent if and only if their maps Γf and Γg

coincide.
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