Brocard points

1 Brocard points in triangles

- 1. Let a triangle ABC be given. Prove that there exists a unique point P, such that $\angle PAB = \angle PBC = \angle PCA = \phi_1$, and a unique point Q, such that $\angle QBA = \angle QCB = \angle QAC = \phi_2$.

 Definition 1. Points P and Q are called the *Brocard points* of triangle ABC.
- 2.
- a) Prove that $\phi_1 = \phi_2 = \phi$.
- b) Find ϕ as a function of the angles of ABC.

Definition 2. Angle ϕ is called the *Brocard angle* of triangle ABC.

- **3.** Prove that the projections of Brocard points to the sidelines of ABC are concyclic. (This is true for any pair of isogonally conjugated points).
- **4.** Let O be the circumcircle of ABC.
 - a) Prove that OP = OQ.
 - b) Prove that $\angle POQ = 2\phi$.

Definition 3. The reflections of the medians of a triangle in its correspondent bisectors are called the *symmedians*. Three symmedians concur in point L, which is called the *Lemoine point* of the triangle.

- **5.** Prove that P and Q lie on the circle with diameter OL.
- **6.** (K.Knop) Consider two triangles: one of them is formed by the circumcenters of triangles PAB, PBC, PCA; the second one is formed by the circumcenters of triangles QAB, QBC, QCA. Prove that these triangles are
 - a) similar to ABC;
 - b) equal.
 - c) Find the center and the angle of the rotation transforming one of these triangles to the second one.
- 7. Let C' be a point of segment AB, such that AB is the external bisector of angle PC'Q. Prove that CC' is the symmedian of ABC. (I.e. there exists an ellipse with foci P and Q touching the sides of the triangle in the bases of its symmedians).
- **8.** Let T_1 , T_2 be points of line OL, such that $\angle LPT_1 = \angle LPT_2 = 60^\circ$. Prove that the projections of each of these points to the sidelines of ABC form a regular triangle (these points are called the *Apollonius points*).

2 Brocard points in quadrilaterals

- **9.** Let ABCD be a convex broken line. Prove that there exists a unique point P, such that $\angle PAB = \angle PBC = \angle PCD = \phi$.
 - **Definition 4.** We will call P and ϕ the *Brocard point* and the *Brocard angle* of broken line ABCD. We will denote them as P(ABCD) and $\phi(ABCD)$.
- 10. Find $\phi(ABCD)$ as a function of the lengths of segments AB, BC, CA and the angles between them.
- 11. Prove that $\phi(ABCD) = \phi(DCBA)$ iff A, B, C, D are concyclic. Now we will consider only cyclic polygons.
- 12. Let $P_1 = P(ABCD)$, $P_2 = P(BCDA)$, $P_3 = P(CDAB)$, $P_4 = P(DABC)$. Prove that $P_1P_2P_3P_4$ is a cyclic quadrilateral.
- **13.** Let $Q_1 = P(DCBA)$, $Q_2 = P(ADCB)$, $Q_3 = P(BADC)$, $Q_4 = P(CBDA)$. Prove that $P_1P_2/Q_1Q_2 = BC/CD$, $P_2P_3/Q_2Q_3 = CD/DA$ etc.
- **14.** (D.Belev) Let M_1 , M_2 be points on lines AD, AB respectively such that $BM_1 \parallel CD$, $CM_2 \parallel DA$.
 - a) Prove that the circumcircles of triangles BAM_1 and BCM_2 meet in P_1 .
 - b) Define the similar construction for P_i , i = 2, ..., 4, Q_i , i = 1, ..., 4.
- **15.** (D.Belev) Prove that lines CP_1 , DP_2 , AP_3 , BP_4 concur, and lines BQ_1 , CQ_2 , DQ_3 , AQ_4 concur.
- **16.** (D.Belev) Denote the points obtained in the previous problem as P_0 , Q_0 .
 - a) Prove that $S_{P_1P_2P_0} = S_{Q_1Q_2Q_0}$
 - b) Prove that the areas of $P_1P_2P_3P_4$ and $Q_1Q_2Q_3Q_4$ are equal.
- 17. Prove that $\phi(ABCD) = \phi(BCDA)$ iff $AB \cdot CD = AD \cdot BC$.
 - **Definition 5.** A cyclic quadrilateral with equal products of opposite sides is called harmonic. From the last problem we obtain that in the harmonic quadrilateral there exist points P and Q, such that $\angle PAB = \angle PBC = \angle PCD = \angle PDA = \angle QDC = \angle QCB = \angle QBA = \angle QAD = \phi$. We will call P, Q and ϕ the Brocard points and the Brocard angle of quadrilateral ABCD.
- 18. Prove that each of the following conditions is true iff ABCD is harmonic.
 - a) The tangents to the circumcircle in A and C meet on BD.
 - b) BD is a symmetrian of ABC.
 - c) The distances from the common point L of the diagonals to the sides are proportional to these sides.
 - d) There exists an inversion transforming A, B, C, D to the vertices of a square.
 - e) There exists a central projection transforming ABCD and its circumcircle to a square and a circle.
- 19. Find the Brocard angle of a harmonic quadrilateral as a function of its angles.
- **20.** Prove that OP = OQ and $\angle POQ = 2\phi$.
- **21.** Prove that P and Q lie on the circle with diameter OL.

3 Brocard points in polygons

- **22.** Let a circle, a point P inside it and an angle ϕ be given. For an arbitrary point X_0 on the circle construct a point X_1 , such that the oriented angle PX_0X_1 is equal to ϕ . Similarly for X_1 construct X_2 etc. Prove that if $X_n = X_0$, then this is true for any other initial point.
- 23. Find the closure condition in the previous problem.

Remind that all considered polygons are cyclic.

Definition 6. We will call a polygon $A_1 ... A_n$ a *Brocard* polygon if there exists a point P, such that $\angle PA_1A_2 = \angle PA_2A_3 = \cdots \angle PA_nA_1 = \phi$.

24. Prove that in a Brocard polygon there exists a point Q such that $\angle QA_1A_n = \angle QA_nA_{n-1} = \cdots \angle QA_2A_1 = \phi$.

Definition 7. We will call P, Q and ϕ the *Brocard points* and the *Brocard angle* of $A_1 \ldots A_n$.

- **25.** Prove that each of the following conditions is true iff $A_1 \dots A_n$ is the Brocard polygon.
 - a) There exists a point L, such that the distances from it to the sides of the polygon are proportional to these sides.
 - b) The symmedians of triangles $A_1A_2A_3, A_2A_3A_4, \ldots, A_nA_1A_2$ from A_2, A_3, \ldots, A_1 concur.
 - c) The common points of lines $A_1A_3, A_2A_4, \ldots, A_nA_2$ with the tangents to the circumcircle in A_2, A_3, \ldots, A_1 respectively are collinear.
 - d) There exists an inversion transforming A_1, \ldots, A_n to the vertices of a regular triangle.
 - e) There exists a central projection transforming the polygon and its circumcircle to a regular polygon and a circle.
- **26.** Prove that the Brocard points lie on the circle with diameter OL and $\angle POL = \angle QOL = \phi$. **27.**
 - a) Prove that there exist two points T_1 , T_2 such that the inversion with the center in any of them transforms A_1, \ldots, A_n to the vertices of a regular triangle.
 - b) Prove that T_1 , T_2 lie on OL and $\angle T_1PL = \angle T_2PL = \frac{\pi}{n}$.
- **28.** Find the Brocard angle as a function of OL/R.