Colorings and clusters

M. Matdinov
Additional problems

23. k-dimensional cube $n \times n \times \cdots \times n$ is divided by $n^{k} k$-dimensional subcubes $1 \times 1 \times \cdots \times 1$ colored by ℓ colors. Consider all triples of colors (a, b, c). Consider the set of points colored by these 3 colors simultaneously. Surround each of them by circle of radius 2 . Consider connected components of the union of these circles. Suppose that all such components for all triples (a, b, c) have diameter less than d.
Then there exists a positive constant $C(k, d, \ell)>0$ such that for any coloring there exists a cluster of volume $C(k, d, \ell) \cdot n^{k-1}$.
a) Prove that for $k=3$.
b) Prove that for all k.
24. ${ }^{\star \star}$ Generalize condition of the previous problem for m-tuples of colours. General hypothesis: there exists a constant $C(k, m, d, \ell)>0$ such that for each coloring of k-dimensional cube $n \times n \times \cdots \times n$ by l colors there exists a cluster of volume $C(k, m, d, \ell) \cdot n^{k+2-m}$.
This hypothesis can be considered as generalization of the problem 15. We don't know how to solve it.
