
FUNCTIONAL EQUATIONS

Second stage
F) Suppose a function g satisfies the equation

g(x+ y) = g(x) + g(y)

where the tuple (x, y) belongs to some subset Z of the plane R2. If g can be extended to a
function f satisfying the same equation for all x, y ∈ R2 then we say that f is an additive
extension of g.

13. Show that if Z is the unit square then any function g satisfying the Cauchy equation
on Z has a unique additive extension to the whole plane.

Solution. An arbitrary number x may be represented as ny where n ∈ N, y ∈ Z.
Set g(x) = ng(y). Then correctness of the definition, additivity and uniqueness are easily
checked.

14. Give an example of an infinite set Z and a function g which satisfies the Cauchy
equation on Z but has no additive extension from Z to R2.

Example. Z = {(x, {x}) | x ∈ R; g(x) = {x}} where {x} is the integer part of x.
The above results have an application, for instance, in the following economic-mathematical

model described in [1], pp. 95–96.
15. Suppose we have to divide an amount S of money between m > 2 competing

projects. Each of n experts makes a recommendation (expert j suggests to grant the
project i with the sum ξij), and finally the ’consensus’ allocation is given by some function

φi(ξi1, . . . , ξin).

Observe that for each project the consensus allocation is determined by the sums recommended
by the experts for this project only, but the form of this dependence may vary for different
projects. We impose two natural requirements.

(i) If all experts allocate zero sum to some project then this project obtains 0 in the
consensus allocation:

φi(0, . . . , 0) = 0 (i = 1, . . . , n).

b) If all the allocations recommended by the experts exhaust the sum S then this is true
for the consensus allocation as well:

m∑
i=1

xij = S (j = 1, . . . , n) implies
m∑

i=1
φi(xi1, . . . , xin) =

S.
Show that under the above conditions, all the functions φi have the same (not depending

on i) form
∑
ωjξj where ωj ≥ 0,

∑
ωj = 1.

Solution. For brevity, denote (S, . . . , S) by S and (xi1, . . . , xin) by xi. Observe that
condition (ii) is equivalent to

m∑
i=2

φi(xi) + φ1(S −
m∑

i=2

xi) = S.

For x2 = . . . = xn = 0 we deduce φ1(S) = S (i = 1, . . . , m). For x3 = . . . = xm = 0 we
get φ1(S − x) = S − φ2(x) for arbitrary x. Putting x4 = . . . = xm = 0, x2 = x, x3 = y,
we obtain the Pexider equation (for each coordinate):

φ2(x + y) = φ2(x) + φ3(y) (x,y,x + y ∈ [0;S]n).
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Put x = 0. Then φ2(y) = φ3(y). Similarly we deduce that each φi equals the same
function φ. We get the equation φ(x + y) = φ(x)+φ(y) for x,y,x + y ∈ [0;S]n. Obviously
φ(ξ1, . . . , ξn) ≡ φ(ξ1, 0, . . . , 0)+φ(0, ξ2, 0, . . .)+. . .+φ(0, . . . , 0, ξn) := f1(ξ1)+f2(ξ2)+. . .+
fn(ξn) (here ξ1, . . . , ξn are real variables). Each of functions f1, . . . , fn satisfies additive
Cauchy equation on [0;S]. The sense of the problem implies non-negativity of values of
φ, f1, . . . , fn. In view of the results of Problems 13 and 10, we see that φ(x) has the form
φ(x) =

n∑
j=1

ωjξj where ωj ≥ 0. Since φ(S) = S, we have
n∑

j=1
ωj = 1. Conversely, functions

of this form satisfy the conditions of the problem.
G) 16. Find all continuous real functions of a positive real variable which satisfy the

equation
f(xy) = a(x) + b(x)c(y).

Answer. 1) f(x) ≡ a(x) ≡ K (K is an arbitrary constant, b(x) ≡ 0, c(y) an arbitrary
continuous function.

2) f(x) ≡ K1, a(x) ≡ K1−b(x)K2 (K1, K2 are arbitrary constants), b(x) an arbitrary
continuous function, c(y) ≡ K2.

3)
f(x) = K1 ln x+K2, a(x) = K1 ln x+K2 −K3K4,

b(x) ≡ K3, c(y) =
K1 ln y

K3

+K4

(K1, K2, K3, K4 are arbitrary constants, K3 �= 0).
4)

f(x) = K1(x
α − 1) +K2, a(x) = K1(x

α − 1) +K2 −K3K4x
α,

b(x) = K3x
α, c(y) =

K1(x
α − 1)

K3
+K4

(K1, K2, K3, K4, α are arbitrary constants, K3 �= 0, α �= 0).
Solution. Put

f1(x) := f(x) − f(1), c1(y) := c(y) − c(1), a1(x) := a(x) − f(1) + b(x)c(1).

Then

(′) f1(xy) = a1(x) + b(x)c1(y),

(′′) f1(1) = c1(1) = 0.

Putting y = 1, we get f1(x) = a1(x). If a1 ≡ 0 then either b or c1 is zero constant and we
obtain classes 1 and 2 of functions in the answer (see above). Otherwise put x = 1. Then

f1(y) ≡ b(1)c1(y),

whence b(1) �= 0. Put
b1(x) := b(x)/b(1).

Then f1(xy) = f1(x) + b1(x)f1(y), hence

f1(xyz) = f1(xy) + b1(xy)f1(z) = f1(x) + b1(x)f1(y) + b1(xyz)f1(z),
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f1(xyz) = f1(x) + b1(x)f1(yz) = f1(x) + b1(x)f1(y) + b1(x)b1(y)f1(z).

Compare these equations and take a value of z such that f1(z) �= 0. We get

b1(xy) ≡ b1(x)b1(y).

Since b1(0) �= 0, we have, in view of the result of Problem 9(c), b1(x) = xα where α is
an arbitrary constant. Thus f1(xy) = f1(x) + xαf1(y). If a = 0 then in view of the result
of Problem 9(a) we obtain the class 3 of functions. Now suppose α �= 0. Take arbitrary
x, y �= 1. Since f1(xy) = f1(x) + xαf1(y), f1(xy) = f1(y) + yαf1(x), we have

f1(x)

xα − 1
:=

f1(y)

yα − 1
.

Since the left side does not depend on y and the right one on x, both are constants, and
we obtain the class 4 of functions.

Many of you know that the integral of a power function is again a power function (with
a coefficient) with the only exception: the integral of 1/x is the logarithm (all integrals
are, of course, defined up to an additive constant). In a standard course of calculus, this
fact is proved with the help of differentiation, and the cases of degree −1 and of all other
degrees are treated separately.

17. Find the integral of xa where x is a positive real variable, a an arbitrary constant,
using the results of Problems 16, 9a and 9c as the base for your argument. It is not allowed
to differentiate until you obtain the functional equation!

Solution. Suppose g(x) = xa, f(x) is the antiderivative for g(x). We may assume
f(1) = 0. Since g(xy) ≡ g(x)g(y), we have

f(xy) =
∫ xy

1
g(t)dt =

∫ x

1
g(t) +

∫ xy

x
g(t)dt =

= f(x) +
∫ y

1
g(tx)d(tx) = f(x) + g(x)x

∫ y

1
g(t)dt =

= f(x) + xa+1f(y).

We are in the conditions of Problem 16 with f(x) = a(x) �= const, b(x) = f(x), c(y) =
xa+1. If a = −1, we have case 3 with K2 = K4 = 0, K3 = 1, so f(x) = K1 ln x. If a �= −1,
we get case 4 with α = a + 1, K2 = K4 = 0, K3 = 1, and so f(x) = K1(x

a+1 − 1).
H) 18. Find all continuous solutions of the d’Alembert equation

f(φ+ ψ) + f(φ− ψ) = 2f(φ)f(ψ)

under the condition f(π/4) =
√

2/2.
Solution. Putting ψ = 0, we get f(0) = 1. Then for some C > 0 we have f(x) > 0 for

x ∈ [0, C]. Putting ψ = φ = x/2, we get

(∗ ∗ ∗) f(x) + 1 = 2f(x/2)2.

Suppose f(C) < 1. Then f(C) = cosα for some α ∈ [0; π/2). By (∗∗∗) we have f(C/2) =
cosα/2, and using induction, we get f(C/2n) = cosα/2n for all positive integers n. The
original equation implies:

f

(
k + 1

2n
C

)
= 2f

(
k

2n
C

)
f
(

1

2n
C
)
− f

(
k − 1

2n
C

)
=
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= 2 cos

(
k

2n
α

)
cos

(
α

2n

)
− cos

(
k − 1

2n
α

)
= cos

(
k + 1

2n
α

)
.

By continuity (property (b)) f(Cx) = cosαx for any x. Putting c = α/C, Cx = φ, we
have f(x) = cos cφ. Condition (∗∗) implies c = 8k ± 1.

Now suppose f(C) > 1. Then similar argument shows that f(φ) > 1 for any φ, thus
condition (∗∗) fails.

Comment. For C > 1, if we omit condition (∗∗), the equation has the solution

f(x) = ch(cx) where c is an arbitrary constant, ch(x) :=
ex + e−x

2
.

19. Now can you present a functional equation defining
(a) the sine function sin x?
(b) the tangent function tan x?
Solution. (a) f(φ+ψ+ π

2
)+ f(φ−ψ+ π

2
) = 2f(φ+ π

2
)f(ψ+ π

2
) under condition (∗∗).

(b) f(x+ y) =
f(x) + f(y)

1 − f(x)f(y)
under condition, for instance, f(π/4) = 1.

∗20. Using results of Problems 8 and 18, show that the vector addition in 3-dimensional
Euclidean space is the only operation on pairs of such vectors which satisfies the following
conditions:

(i) if both vectors are subject to the same rotation then the result of the operation also
is subject to the same rotation;

(ii) the operation is commutative and associative;
(iii) two vectors pointing in the same direction yield a vector of the same direction

whose length is the sum of the lengths of our initial vectors;
(iv) the sum of two vectors of equal length depends continuously on their angle.
The pattern of the solution (see [1], p. 13–18). Denote the operation under consideration

by ◦ and call its result the sum of the vectors. Condition (iii) implies that p◦0 = p for any
vector p (0 is the zero vector). Applying (i), we have −p ◦ p = 0. Taking (ii) into account,
we obtain:

(v) for the operation ◦, vectors form an Abelian group whose neutral element is 0, and
−p is the inverse element for p.

Condition (i) and commutativity of ◦ imply that the sum of two vectors of equal
length lies on the bissector of one of two angles between them. If the vectors have the
same direction then this is the smaller angle by (iii). If this is the greater angle for some
two vectors of equal length then by continuity (property (iv)) some two vectors of non-
opposite direction have zero sum but this contradicts (v). Thus the sum always lies on
the bissector of the smaller angle between vectors.

Fix now the angle ϕ between two vectors. If their length x is given then the length
g(x) of their sum is determined by (i). Denote the length of a vector v by |v|. Suppose two
vectors p1 and p2 have the same direction as well as two vectors q1 and q2, and suppose
the angle between p1 and q1 equals ϕ. If |p1| = |q1| = x and |p2| = |q2| = y then in view
of (iii) we have |p1 ◦ p2| = |q1 ◦ q2| = x+ y. We also have |p1 ◦ q1| = g(x), |p2 ◦ q2| = g(y).
Then

g(x+ y) = |(p1 ◦ p2) ◦ (q1 ◦ q2)| = |p1 ◦ (p2 ◦ q1) ◦ q2| =

= |p1 ◦ (q1 ◦ p2) ◦ q2| = |(p1 ◦ q1) ◦ (p2 ◦ q2)| = g(x) + g(y).
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We have obtained the Cauchy equation for non-negative x, y which has non-negative
solution. According to the result of Problem 10, g(x) ≡ cx for some c ≥ 0. In fact c > 0
since the sum of two nonzero vectors of non-opposite direction is not 0 (see above).

If the angle between two vectors of unit length equals 2φ then denote the length of
their sum by f(φ). Suppose vectors p1.p2, q1, q2 of unit length are given, and the angles
between p1, p2 and q1, q2 equal 2ψ, the angle between p1, q1 equals 2(φ+ψ), and the angle
between p2, q2 equals 2(φ−ψ). Then the angle between p1 ◦ p2, q1 ◦ q2 equals 2φ. One can
deduce that

f(φ+ ψ) + f(φ− ψ) = 2f(φ)f(ψ)

for 0 ≤ ψ ≤ φ ≤ π
4
. The function f(φ) is continuous by (iv), it equals 0 for φ = π

2
and

does not equal 0 for 0 < φ < π
2
. The solution of Problem 18 implies that f(φ) ≡ cosφ,

and this in turn implies the assertion of the problem for vectors of equal length. It can
be extended to the case of unequal length by means of geometrical argument not using
functional equations; see [1], pp. 17–18.
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